Abstract

We examine the performance of a hybrid Q-switched LiNbO3 and Er3+–Yb3+ doped glass waveguide laser as a modulation function of the duty cycle ratio. As the duty cycle ratio decreases, the laser operates at higher peak power and pulse width. At low duty cycle ratio (<1%), we observe variations in the Q-switched pulse shape; while the laser produces 59-W and 200-ns pulses to a 1-kHz repetition rate for a 50% duty cycle, it yields 27-W and 100-ns pulses to a 10-kHz repetition rate for a 0.01% duty cycle.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription