Abstract

An extended-cavity diode laser at 852 nm has been built especially for the purpose of cooling and probing cesium atoms. It is a compact, self-aligned, and continuously tunable laser source having a 100-kHz linewidth and 60-mW output power. The electronic control of the laser frequency by the piezodriven external reflector covers a 4.5-kHz bandwidth, allowing full compensation of acoustic frequency noise without any adverse effect on the laser intensity noise. We locked this laser to Doppler-free resonances on the cesium D 2 line by using the Zeeman modulation technique, resulting in the frequency and the intensity of the laser beam being unmodulated. We also tuned the locked laser frequency over a span of 120 MHz by using the dc Zeeman effect to shift the F = 4–F′ = 5 reference transition.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Maki, N. S. Campbell, C. M. Grande, R. P. Knorpp, D. H. McIntyre, “Stabilized diode-laser system with grating feedback and frequency-offset locking,” Opt. Commun. 102, 251–256 (1993).
    [CrossRef]
  2. K. Liu, M. G. Littman, “Novel geometry for single-mode scanning of tunable lasers,” Opt. Lett. 6, 117–118 (1981).
    [CrossRef] [PubMed]
  3. A. M. Akulshin, V. V. Nikitin, V. A. Sautenkov, V. V. Vasiliev, V. L. Velichansky, E. K. Yurkin, A. S. Zibrov, “Frequency stabilization of highly coherent AlGaAs diode lasers,” in Proceedings of the Fourth Symposium on Frequency Standards and Metrology (Springer-Verlag, Berlin, 1989), pp. 236–241.
    [CrossRef]
  4. T. Ikegami, S. Ohshima, M. Ohtsu, “Frequency stabilization of laser diodes to the Cs-D2 line with the Zeeman modulation method,” Jpn. J. Appl. Phys. 28, L1839–L1841 (1989).
    [CrossRef]
  5. K. L. Corwin, Z.-T. Lu, C. F. Hand, R. J. Epstein, C. E. Wieman, “Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor,” Appl. Opt. 37, 3295–3298 (1998).
    [CrossRef]
  6. N. Dimarcq, Laboratoire de l’Horloge Atomique de l’Universite Paris-Sud, bâtiment 221, 15 rue Georges Clémenceau, 91405 Orsay cedex, France (private communication, 1998).
  7. T. P. Dineen, C. D. Wallace, P. L. Gould, “Narrow linewidth, highly stable, tunable diode laser system,” Opt. Commun. 92, 277–282 (1991).
    [CrossRef]
  8. K. C. Harvey, C. J. Myatt, “External-cavity diode-laser using a grazing-incidence diffraction grating,” Opt. Lett. 16, 910–912 (1991).
    [CrossRef] [PubMed]

1998

1993

J. J. Maki, N. S. Campbell, C. M. Grande, R. P. Knorpp, D. H. McIntyre, “Stabilized diode-laser system with grating feedback and frequency-offset locking,” Opt. Commun. 102, 251–256 (1993).
[CrossRef]

1991

T. P. Dineen, C. D. Wallace, P. L. Gould, “Narrow linewidth, highly stable, tunable diode laser system,” Opt. Commun. 92, 277–282 (1991).
[CrossRef]

K. C. Harvey, C. J. Myatt, “External-cavity diode-laser using a grazing-incidence diffraction grating,” Opt. Lett. 16, 910–912 (1991).
[CrossRef] [PubMed]

1989

T. Ikegami, S. Ohshima, M. Ohtsu, “Frequency stabilization of laser diodes to the Cs-D2 line with the Zeeman modulation method,” Jpn. J. Appl. Phys. 28, L1839–L1841 (1989).
[CrossRef]

1981

Akulshin, A. M.

A. M. Akulshin, V. V. Nikitin, V. A. Sautenkov, V. V. Vasiliev, V. L. Velichansky, E. K. Yurkin, A. S. Zibrov, “Frequency stabilization of highly coherent AlGaAs diode lasers,” in Proceedings of the Fourth Symposium on Frequency Standards and Metrology (Springer-Verlag, Berlin, 1989), pp. 236–241.
[CrossRef]

Campbell, N. S.

J. J. Maki, N. S. Campbell, C. M. Grande, R. P. Knorpp, D. H. McIntyre, “Stabilized diode-laser system with grating feedback and frequency-offset locking,” Opt. Commun. 102, 251–256 (1993).
[CrossRef]

Corwin, K. L.

Dimarcq, N.

N. Dimarcq, Laboratoire de l’Horloge Atomique de l’Universite Paris-Sud, bâtiment 221, 15 rue Georges Clémenceau, 91405 Orsay cedex, France (private communication, 1998).

Dineen, T. P.

T. P. Dineen, C. D. Wallace, P. L. Gould, “Narrow linewidth, highly stable, tunable diode laser system,” Opt. Commun. 92, 277–282 (1991).
[CrossRef]

Epstein, R. J.

Gould, P. L.

T. P. Dineen, C. D. Wallace, P. L. Gould, “Narrow linewidth, highly stable, tunable diode laser system,” Opt. Commun. 92, 277–282 (1991).
[CrossRef]

Grande, C. M.

J. J. Maki, N. S. Campbell, C. M. Grande, R. P. Knorpp, D. H. McIntyre, “Stabilized diode-laser system with grating feedback and frequency-offset locking,” Opt. Commun. 102, 251–256 (1993).
[CrossRef]

Hand, C. F.

Harvey, K. C.

Ikegami, T.

T. Ikegami, S. Ohshima, M. Ohtsu, “Frequency stabilization of laser diodes to the Cs-D2 line with the Zeeman modulation method,” Jpn. J. Appl. Phys. 28, L1839–L1841 (1989).
[CrossRef]

Knorpp, R. P.

J. J. Maki, N. S. Campbell, C. M. Grande, R. P. Knorpp, D. H. McIntyre, “Stabilized diode-laser system with grating feedback and frequency-offset locking,” Opt. Commun. 102, 251–256 (1993).
[CrossRef]

Littman, M. G.

Liu, K.

Lu, Z.-T.

Maki, J. J.

J. J. Maki, N. S. Campbell, C. M. Grande, R. P. Knorpp, D. H. McIntyre, “Stabilized diode-laser system with grating feedback and frequency-offset locking,” Opt. Commun. 102, 251–256 (1993).
[CrossRef]

McIntyre, D. H.

J. J. Maki, N. S. Campbell, C. M. Grande, R. P. Knorpp, D. H. McIntyre, “Stabilized diode-laser system with grating feedback and frequency-offset locking,” Opt. Commun. 102, 251–256 (1993).
[CrossRef]

Myatt, C. J.

Nikitin, V. V.

A. M. Akulshin, V. V. Nikitin, V. A. Sautenkov, V. V. Vasiliev, V. L. Velichansky, E. K. Yurkin, A. S. Zibrov, “Frequency stabilization of highly coherent AlGaAs diode lasers,” in Proceedings of the Fourth Symposium on Frequency Standards and Metrology (Springer-Verlag, Berlin, 1989), pp. 236–241.
[CrossRef]

Ohshima, S.

T. Ikegami, S. Ohshima, M. Ohtsu, “Frequency stabilization of laser diodes to the Cs-D2 line with the Zeeman modulation method,” Jpn. J. Appl. Phys. 28, L1839–L1841 (1989).
[CrossRef]

Ohtsu, M.

T. Ikegami, S. Ohshima, M. Ohtsu, “Frequency stabilization of laser diodes to the Cs-D2 line with the Zeeman modulation method,” Jpn. J. Appl. Phys. 28, L1839–L1841 (1989).
[CrossRef]

Sautenkov, V. A.

A. M. Akulshin, V. V. Nikitin, V. A. Sautenkov, V. V. Vasiliev, V. L. Velichansky, E. K. Yurkin, A. S. Zibrov, “Frequency stabilization of highly coherent AlGaAs diode lasers,” in Proceedings of the Fourth Symposium on Frequency Standards and Metrology (Springer-Verlag, Berlin, 1989), pp. 236–241.
[CrossRef]

Vasiliev, V. V.

A. M. Akulshin, V. V. Nikitin, V. A. Sautenkov, V. V. Vasiliev, V. L. Velichansky, E. K. Yurkin, A. S. Zibrov, “Frequency stabilization of highly coherent AlGaAs diode lasers,” in Proceedings of the Fourth Symposium on Frequency Standards and Metrology (Springer-Verlag, Berlin, 1989), pp. 236–241.
[CrossRef]

Velichansky, V. L.

A. M. Akulshin, V. V. Nikitin, V. A. Sautenkov, V. V. Vasiliev, V. L. Velichansky, E. K. Yurkin, A. S. Zibrov, “Frequency stabilization of highly coherent AlGaAs diode lasers,” in Proceedings of the Fourth Symposium on Frequency Standards and Metrology (Springer-Verlag, Berlin, 1989), pp. 236–241.
[CrossRef]

Wallace, C. D.

T. P. Dineen, C. D. Wallace, P. L. Gould, “Narrow linewidth, highly stable, tunable diode laser system,” Opt. Commun. 92, 277–282 (1991).
[CrossRef]

Wieman, C. E.

Yurkin, E. K.

A. M. Akulshin, V. V. Nikitin, V. A. Sautenkov, V. V. Vasiliev, V. L. Velichansky, E. K. Yurkin, A. S. Zibrov, “Frequency stabilization of highly coherent AlGaAs diode lasers,” in Proceedings of the Fourth Symposium on Frequency Standards and Metrology (Springer-Verlag, Berlin, 1989), pp. 236–241.
[CrossRef]

Zibrov, A. S.

A. M. Akulshin, V. V. Nikitin, V. A. Sautenkov, V. V. Vasiliev, V. L. Velichansky, E. K. Yurkin, A. S. Zibrov, “Frequency stabilization of highly coherent AlGaAs diode lasers,” in Proceedings of the Fourth Symposium on Frequency Standards and Metrology (Springer-Verlag, Berlin, 1989), pp. 236–241.
[CrossRef]

Appl. Opt.

Jpn. J. Appl. Phys.

T. Ikegami, S. Ohshima, M. Ohtsu, “Frequency stabilization of laser diodes to the Cs-D2 line with the Zeeman modulation method,” Jpn. J. Appl. Phys. 28, L1839–L1841 (1989).
[CrossRef]

Opt. Commun.

T. P. Dineen, C. D. Wallace, P. L. Gould, “Narrow linewidth, highly stable, tunable diode laser system,” Opt. Commun. 92, 277–282 (1991).
[CrossRef]

J. J. Maki, N. S. Campbell, C. M. Grande, R. P. Knorpp, D. H. McIntyre, “Stabilized diode-laser system with grating feedback and frequency-offset locking,” Opt. Commun. 102, 251–256 (1993).
[CrossRef]

Opt. Lett.

Other

A. M. Akulshin, V. V. Nikitin, V. A. Sautenkov, V. V. Vasiliev, V. L. Velichansky, E. K. Yurkin, A. S. Zibrov, “Frequency stabilization of highly coherent AlGaAs diode lasers,” in Proceedings of the Fourth Symposium on Frequency Standards and Metrology (Springer-Verlag, Berlin, 1989), pp. 236–241.
[CrossRef]

N. Dimarcq, Laboratoire de l’Horloge Atomique de l’Universite Paris-Sud, bâtiment 221, 15 rue Georges Clémenceau, 91405 Orsay cedex, France (private communication, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Self-aligned extended-cavity diode laser in a Littman configuration: 1, laser diode chip; 2, collimating lens f = 4.5 mm; 3, 1400-lines/mm holographic grating; 4, right-angle prism retroreflector; 5, piezotranslators.

Fig. 2
Fig. 2

Extended-cavity diode laser and enlargement of PZT’s plus right-angle prism: 1, local thermostats; 2, laser diode package; 3, right-angle prism; 4, PZT’s; 5, adjustment of focal point; 6, adjustment of the prism angle (more than 10-nm wavelength tuning); 7, diffraction grating; 8, lens support.

Fig. 3
Fig. 3

Intensity noise spectra of the ECL: (a) detector noise, laser off; (b) free-running laser; (c) frequency-locked laser with piezocontrol of the reflector; (d) frequency-locked laser with current control. The direct current signal is 10 V.

Fig. 4
Fig. 4

Continuous tuning range versus ratio r between amplitudes of the PZT. The maximum frequency tuning without mode hop is 8 GHz.

Fig. 5
Fig. 5

Beat-note signal between two different extended-cavity diode lasers with an accumulation time of 20 s (100 scans). The linewidths measured between the -3-dB points of the two lasers are 80 and 100 kHz, respectively, as calculated from two other beat notes with a third laser.

Fig. 6
Fig. 6

Frequency shift of a laser locked to the F = 4–F′ = 5 transition as a function of the applied magnetic field. The tuning factor (1.05 MHz/G) is smaller than the value for the (F = 4, m F = 4–F′ = 5, m F = 5) transition (1.4 MHz/G) because of incomplete Zeeman pumping.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R=L cos θdNλ,

Metrics