Abstract

A fiber-optic voltage sensor based on the longitudinal Pockels effect in a Bi12TiO20 crystal is described. The use of a special backreflecting prism as a phase-retarding element is shown to improve the sensitivity and temperature stability of the sensor. A comparison between the temperature properties of the glass backreflecting prism and that of a quarter-wave plate is derived. The sensor demonstrates temperature stability of ±1.5% from -20 °C to 60 °C and sensitivity of 0.145% per 1 Vrms at 850 nm without the use of an additional temperature control channel.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Hamasaki, H. Gotoh, M. Katoh, S. Takeuchi, “OPSEF: an optical sensor for measurement of high electric field intensity,” Electron. Lett. 16, 406–407 (1980).
    [CrossRef]
  2. Y. Kuhara, Y. Hamasaki, A. Kawakami, Y. Murakami, M. Tatsumi, H. Takimoto, K. Tada, T. Mitsui, “BSO/fibre-optic voltmeter with excellent temperature stability,” Electron. Lett. 18, 1055–1056 (1982).
    [CrossRef]
  3. J. P. Dakin, M. C. Holliday, “A passive all-dielectric field probe for R.F. measurement using the electro-optic effect,” in Fiber Optics ’84, J. M. Tait, ed., Proc. SPIE468, 237–240 (1984).
  4. K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, Y. Ida, “Fiber-optic current and voltage sensors using a Bi12GeO20 single crystal,” J. Lightwave Technol. LT-1, 93–97 (1983).
    [CrossRef]
  5. M. Norimatsu, M. Shirasaki, “Bi12SiO20 crystal application for voltage sensor in optical fibers,” Ferroelectrics 75, 189–196 (1987).
    [CrossRef]
  6. A. H. Rose, G. W. Day, “Optical fiber voltage sensors for broad temperature ranges,” in Fiber Optic Components and Reliability, P. M. Kopera, D. K. Paul, eds., Proc. SPIE1580, 95–103 (1992).
    [CrossRef]
  7. J. Niewisch, P. Menke, P. Krammer, T. Bosselmann, “Temperature drift compensation of a potential transformer using a BSO Pockels cell,” in Proceedings of the 11th International Conference on Optical Fiber Sensors: Advanced Sensing Photonics21–24 May 1996, Sapporo, Japan, (Japan Society of Applied Physics, Tokyo, 1996), pp. 152–155.
  8. A. Koch, C. Helmig, H. Senftleben, “Experimental studies on a temperature compensation for optical voltage sensing,” in Optical Fiber Sensors, Vol. 16 of OSA 1997 Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 257–260.
  9. T. Bosselmann, “Magneto- and electrooptic transformers meet expectations of power industry,” in Optical Fiber Sensors, Vol. 16 of OSA 1997 Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 771–774.
  10. P. D. Hale, G. W. Day, “Stability of birefringent linear retarders (waveplates),” Appl. Opt. 27, 5146–5153 (1988).
    [CrossRef] [PubMed]
  11. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).
  12. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).
  13. Industrial Standart of the USSR: GOST No. 13659-78, BK-10 Glass, (Edition of Standarts, Moscow, 1981), in Russian.
  14. W. G. Driscoll, W. Vaughan, eds., Handbook of Optics (McGraw-Hill, New York, 1978).

1988

1987

M. Norimatsu, M. Shirasaki, “Bi12SiO20 crystal application for voltage sensor in optical fibers,” Ferroelectrics 75, 189–196 (1987).
[CrossRef]

1983

K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, Y. Ida, “Fiber-optic current and voltage sensors using a Bi12GeO20 single crystal,” J. Lightwave Technol. LT-1, 93–97 (1983).
[CrossRef]

1982

Y. Kuhara, Y. Hamasaki, A. Kawakami, Y. Murakami, M. Tatsumi, H. Takimoto, K. Tada, T. Mitsui, “BSO/fibre-optic voltmeter with excellent temperature stability,” Electron. Lett. 18, 1055–1056 (1982).
[CrossRef]

1980

Y. Hamasaki, H. Gotoh, M. Katoh, S. Takeuchi, “OPSEF: an optical sensor for measurement of high electric field intensity,” Electron. Lett. 16, 406–407 (1980).
[CrossRef]

Azzam, R. M. A.

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).

Bashara, N. M.

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).

Bosselmann, T.

J. Niewisch, P. Menke, P. Krammer, T. Bosselmann, “Temperature drift compensation of a potential transformer using a BSO Pockels cell,” in Proceedings of the 11th International Conference on Optical Fiber Sensors: Advanced Sensing Photonics21–24 May 1996, Sapporo, Japan, (Japan Society of Applied Physics, Tokyo, 1996), pp. 152–155.

T. Bosselmann, “Magneto- and electrooptic transformers meet expectations of power industry,” in Optical Fiber Sensors, Vol. 16 of OSA 1997 Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 771–774.

Dakin, J. P.

J. P. Dakin, M. C. Holliday, “A passive all-dielectric field probe for R.F. measurement using the electro-optic effect,” in Fiber Optics ’84, J. M. Tait, ed., Proc. SPIE468, 237–240 (1984).

Day, G. W.

P. D. Hale, G. W. Day, “Stability of birefringent linear retarders (waveplates),” Appl. Opt. 27, 5146–5153 (1988).
[CrossRef] [PubMed]

A. H. Rose, G. W. Day, “Optical fiber voltage sensors for broad temperature ranges,” in Fiber Optic Components and Reliability, P. M. Kopera, D. K. Paul, eds., Proc. SPIE1580, 95–103 (1992).
[CrossRef]

Gotoh, H.

Y. Hamasaki, H. Gotoh, M. Katoh, S. Takeuchi, “OPSEF: an optical sensor for measurement of high electric field intensity,” Electron. Lett. 16, 406–407 (1980).
[CrossRef]

Hale, P. D.

Hamasaki, Y.

Y. Kuhara, Y. Hamasaki, A. Kawakami, Y. Murakami, M. Tatsumi, H. Takimoto, K. Tada, T. Mitsui, “BSO/fibre-optic voltmeter with excellent temperature stability,” Electron. Lett. 18, 1055–1056 (1982).
[CrossRef]

Y. Hamasaki, H. Gotoh, M. Katoh, S. Takeuchi, “OPSEF: an optical sensor for measurement of high electric field intensity,” Electron. Lett. 16, 406–407 (1980).
[CrossRef]

Helmig, C.

A. Koch, C. Helmig, H. Senftleben, “Experimental studies on a temperature compensation for optical voltage sensing,” in Optical Fiber Sensors, Vol. 16 of OSA 1997 Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 257–260.

Holliday, M. C.

J. P. Dakin, M. C. Holliday, “A passive all-dielectric field probe for R.F. measurement using the electro-optic effect,” in Fiber Optics ’84, J. M. Tait, ed., Proc. SPIE468, 237–240 (1984).

Ida, Y.

K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, Y. Ida, “Fiber-optic current and voltage sensors using a Bi12GeO20 single crystal,” J. Lightwave Technol. LT-1, 93–97 (1983).
[CrossRef]

Katoh, M.

Y. Hamasaki, H. Gotoh, M. Katoh, S. Takeuchi, “OPSEF: an optical sensor for measurement of high electric field intensity,” Electron. Lett. 16, 406–407 (1980).
[CrossRef]

Kawakami, A.

Y. Kuhara, Y. Hamasaki, A. Kawakami, Y. Murakami, M. Tatsumi, H. Takimoto, K. Tada, T. Mitsui, “BSO/fibre-optic voltmeter with excellent temperature stability,” Electron. Lett. 18, 1055–1056 (1982).
[CrossRef]

Koch, A.

A. Koch, C. Helmig, H. Senftleben, “Experimental studies on a temperature compensation for optical voltage sensing,” in Optical Fiber Sensors, Vol. 16 of OSA 1997 Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 257–260.

Krammer, P.

J. Niewisch, P. Menke, P. Krammer, T. Bosselmann, “Temperature drift compensation of a potential transformer using a BSO Pockels cell,” in Proceedings of the 11th International Conference on Optical Fiber Sensors: Advanced Sensing Photonics21–24 May 1996, Sapporo, Japan, (Japan Society of Applied Physics, Tokyo, 1996), pp. 152–155.

Kuhara, Y.

Y. Kuhara, Y. Hamasaki, A. Kawakami, Y. Murakami, M. Tatsumi, H. Takimoto, K. Tada, T. Mitsui, “BSO/fibre-optic voltmeter with excellent temperature stability,” Electron. Lett. 18, 1055–1056 (1982).
[CrossRef]

Kyuma, K.

K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, Y. Ida, “Fiber-optic current and voltage sensors using a Bi12GeO20 single crystal,” J. Lightwave Technol. LT-1, 93–97 (1983).
[CrossRef]

Menke, P.

J. Niewisch, P. Menke, P. Krammer, T. Bosselmann, “Temperature drift compensation of a potential transformer using a BSO Pockels cell,” in Proceedings of the 11th International Conference on Optical Fiber Sensors: Advanced Sensing Photonics21–24 May 1996, Sapporo, Japan, (Japan Society of Applied Physics, Tokyo, 1996), pp. 152–155.

Mikami, N.

K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, Y. Ida, “Fiber-optic current and voltage sensors using a Bi12GeO20 single crystal,” J. Lightwave Technol. LT-1, 93–97 (1983).
[CrossRef]

Mitsui, T.

Y. Kuhara, Y. Hamasaki, A. Kawakami, Y. Murakami, M. Tatsumi, H. Takimoto, K. Tada, T. Mitsui, “BSO/fibre-optic voltmeter with excellent temperature stability,” Electron. Lett. 18, 1055–1056 (1982).
[CrossRef]

Murakami, Y.

Y. Kuhara, Y. Hamasaki, A. Kawakami, Y. Murakami, M. Tatsumi, H. Takimoto, K. Tada, T. Mitsui, “BSO/fibre-optic voltmeter with excellent temperature stability,” Electron. Lett. 18, 1055–1056 (1982).
[CrossRef]

Niewisch, J.

J. Niewisch, P. Menke, P. Krammer, T. Bosselmann, “Temperature drift compensation of a potential transformer using a BSO Pockels cell,” in Proceedings of the 11th International Conference on Optical Fiber Sensors: Advanced Sensing Photonics21–24 May 1996, Sapporo, Japan, (Japan Society of Applied Physics, Tokyo, 1996), pp. 152–155.

Norimatsu, M.

M. Norimatsu, M. Shirasaki, “Bi12SiO20 crystal application for voltage sensor in optical fibers,” Ferroelectrics 75, 189–196 (1987).
[CrossRef]

Nunoshita, M.

K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, Y. Ida, “Fiber-optic current and voltage sensors using a Bi12GeO20 single crystal,” J. Lightwave Technol. LT-1, 93–97 (1983).
[CrossRef]

Rose, A. H.

A. H. Rose, G. W. Day, “Optical fiber voltage sensors for broad temperature ranges,” in Fiber Optic Components and Reliability, P. M. Kopera, D. K. Paul, eds., Proc. SPIE1580, 95–103 (1992).
[CrossRef]

Senftleben, H.

A. Koch, C. Helmig, H. Senftleben, “Experimental studies on a temperature compensation for optical voltage sensing,” in Optical Fiber Sensors, Vol. 16 of OSA 1997 Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 257–260.

Shirasaki, M.

M. Norimatsu, M. Shirasaki, “Bi12SiO20 crystal application for voltage sensor in optical fibers,” Ferroelectrics 75, 189–196 (1987).
[CrossRef]

Tada, K.

Y. Kuhara, Y. Hamasaki, A. Kawakami, Y. Murakami, M. Tatsumi, H. Takimoto, K. Tada, T. Mitsui, “BSO/fibre-optic voltmeter with excellent temperature stability,” Electron. Lett. 18, 1055–1056 (1982).
[CrossRef]

Tai, S.

K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, Y. Ida, “Fiber-optic current and voltage sensors using a Bi12GeO20 single crystal,” J. Lightwave Technol. LT-1, 93–97 (1983).
[CrossRef]

Takeuchi, S.

Y. Hamasaki, H. Gotoh, M. Katoh, S. Takeuchi, “OPSEF: an optical sensor for measurement of high electric field intensity,” Electron. Lett. 16, 406–407 (1980).
[CrossRef]

Takimoto, H.

Y. Kuhara, Y. Hamasaki, A. Kawakami, Y. Murakami, M. Tatsumi, H. Takimoto, K. Tada, T. Mitsui, “BSO/fibre-optic voltmeter with excellent temperature stability,” Electron. Lett. 18, 1055–1056 (1982).
[CrossRef]

Tatsumi, M.

Y. Kuhara, Y. Hamasaki, A. Kawakami, Y. Murakami, M. Tatsumi, H. Takimoto, K. Tada, T. Mitsui, “BSO/fibre-optic voltmeter with excellent temperature stability,” Electron. Lett. 18, 1055–1056 (1982).
[CrossRef]

Yariv, A.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

Yeh, P.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

Appl. Opt.

Electron. Lett.

Y. Hamasaki, H. Gotoh, M. Katoh, S. Takeuchi, “OPSEF: an optical sensor for measurement of high electric field intensity,” Electron. Lett. 16, 406–407 (1980).
[CrossRef]

Y. Kuhara, Y. Hamasaki, A. Kawakami, Y. Murakami, M. Tatsumi, H. Takimoto, K. Tada, T. Mitsui, “BSO/fibre-optic voltmeter with excellent temperature stability,” Electron. Lett. 18, 1055–1056 (1982).
[CrossRef]

Ferroelectrics

M. Norimatsu, M. Shirasaki, “Bi12SiO20 crystal application for voltage sensor in optical fibers,” Ferroelectrics 75, 189–196 (1987).
[CrossRef]

J. Lightwave Technol.

K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, Y. Ida, “Fiber-optic current and voltage sensors using a Bi12GeO20 single crystal,” J. Lightwave Technol. LT-1, 93–97 (1983).
[CrossRef]

Other

J. P. Dakin, M. C. Holliday, “A passive all-dielectric field probe for R.F. measurement using the electro-optic effect,” in Fiber Optics ’84, J. M. Tait, ed., Proc. SPIE468, 237–240 (1984).

A. H. Rose, G. W. Day, “Optical fiber voltage sensors for broad temperature ranges,” in Fiber Optic Components and Reliability, P. M. Kopera, D. K. Paul, eds., Proc. SPIE1580, 95–103 (1992).
[CrossRef]

J. Niewisch, P. Menke, P. Krammer, T. Bosselmann, “Temperature drift compensation of a potential transformer using a BSO Pockels cell,” in Proceedings of the 11th International Conference on Optical Fiber Sensors: Advanced Sensing Photonics21–24 May 1996, Sapporo, Japan, (Japan Society of Applied Physics, Tokyo, 1996), pp. 152–155.

A. Koch, C. Helmig, H. Senftleben, “Experimental studies on a temperature compensation for optical voltage sensing,” in Optical Fiber Sensors, Vol. 16 of OSA 1997 Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 257–260.

T. Bosselmann, “Magneto- and electrooptic transformers meet expectations of power industry,” in Optical Fiber Sensors, Vol. 16 of OSA 1997 Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 771–774.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).

Industrial Standart of the USSR: GOST No. 13659-78, BK-10 Glass, (Edition of Standarts, Moscow, 1981), in Russian.

W. G. Driscoll, W. Vaughan, eds., Handbook of Optics (McGraw-Hill, New York, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the sensor.

Fig. 2
Fig. 2

Transfer function versus phase delay between fast and slow waves: 1, two-pass BTO sensor; 2, single-pass BTO sensor; 3, single-pass BSO sensor; 4, two-pass BSO-sensor.

Fig. 3
Fig. 3

Phase shift between S and P polarizations that is due to reflections in the prism as a function of temperature.

Fig. 4
Fig. 4

Output voltage of the sensor versus applied voltage amplitude with a frequency of 50 Hz.

Fig. 5
Fig. 5

Drift of sensitivity for different channels of the sensor with an applied voltage amplitude of 220 Vrms and a frequency of 400 Hz.

Fig. 6
Fig. 6

Dependence of the output voltage of the sensor as a function of temperature with an applied voltage amplitude of 220 Vrms and a frequency of 400 Hz.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

tanΔ/2=n1/n0n0/n12 sin2 φ-11/2sin φ tan φ,
n0=21-tan2Δ/21/2.
I=|P×R-45°×Cref×R45°×R-45°-ϑ×PHASE×R45°+ϑ×R-45°×Cdir×R45°×E|2,
Φplate=2πΔnLλ,
δΦplate=2πΔnNLλδλλ=Φ0 plateN δλλ.
δΦplateΦ0 plate=N δλλ.
Φprism=4a tan1-2/n2.
δΦprism=dΦprismdndndλ δλ=-4n2-1n2-2dndλ δλ.
δΦ=7.047×10-5 δλ.
ΔΦplate=2πΔnLγΔT/λ,

Metrics