Abstract

We describe a new, to our knowledge, scene-based nonuniformity correction algorithm for array detectors. The algorithm relies on the ability to register a sequence of observed frames in the presence of the fixed-pattern noise caused by pixel-to-pixel nonuniformity. In low-to-moderate levels of nonuniformity, sufficiently accurate registration may be possible with standard scene-based registration techniques. If the registration is accurate, and motion exists between the frames, then groups of independent detectors can be identified that observe the same irradiance (or true scene value). These detector outputs are averaged to generate estimates of the true scene values. With these scene estimates, and the corresponding observed values through a given detector, a curve-fitting procedure is used to estimate the individual detector response parameters. These can then be used to correct for detector nonuniformity. The strength of the algorithm lies in its simplicity and low computational complexity. Experimental results, to illustrate the performance of the algorithm, include the use of visible-range imagery with simulated nonuniformity and infrared imagery with real nonuniformity.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Milton, F. R. Barone, M. R. Kruer, “Influence of nonuniformity on infrared focal plane array performance,” Opt. Eng. 24, 855–862 (1985).
    [CrossRef]
  2. G. C. Holst, CCD Arrays, Cameras, and Displays (SPIE Optical Engineering Press, Bellingham, Wash., 1996).
  3. D. A. Scribner, K. A. Sarkay, J. T. Caulfield, M. R. Kruer, G. Katz, C. J. Gridley, “Nonuniformity correction for staring IR focal plane arrays using scene-based techniques,” in Infrared Detectors and Focal Plane Arrays, E. L. Dereniak, R. E. Sampson, eds., Proc. SPIE1308, 224–233 (1990).
  4. D. A. Scribner, M. R. Kruer, J. C. Gridley, “Physical limitations to nonuniformity correction in focal plane arrays,” in Technologies for Optoelectronics, J. M. Bulabois, R. F. Potter, eds., Proc. SPIE869, 185–201 (1987).
  5. D. L. Perry, E. L. Dereniak, “Linear theory of nonuniformity correction in infrared staring sensors,” Opt. Eng. 32, 1853–1859 (1993).
    [CrossRef]
  6. M. Schulz, L. Caldwell, “Nonuniformity correction and correctability of infrared focal plane arrays,” Inf. Phys. Technol. 36, 763–777 (1995).
    [CrossRef]
  7. D. A. Scribner, K. A. Sarkady, M. R. Kruer, J. T. Caulfield, J. D. Hunt, M. Colbert, M. Descour, “Adaptive retina-like preprocessing for imaging detector arrays,” in Proceedings of the IEEE International Conference on Neural Networks (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 1955–1960.
    [CrossRef]
  8. D. Scribner, K. Sarkady, M. Kruer, J. Caulfield, J. Hunt, M. Colbert, M. Descour, “Adaptive nonuniformity correction for infrared focal plane arrays using neural networks,” in Infrared Sensors: Detectors, Electronics, and Signal Processing, T. S. Jayadev, ed., Proc. SPIE1541, 100–110 (1991).
  9. W. F. O’Neil, “Dithered scan detector compensation,” in Proceedings of the 1993 Meeting of the Infrared Information Symposium (IRIS) Specialty Group on Passive Sensors (Infrared Information Analysis Center, Ann Arbor, Mich., 1993).
  10. W. F. O’Neil, “Experimental verification of dithered scan non-uniformity correction,” in Proceedings of the 1996 Meeting of the Infrared Information Symposium (IRIS) Specialty Group on Passive Sensors (Infrared Information Analysis Center, Ann Arbor, Mich., 1997), Vol. 1, pp. 329–339.
  11. P. M. Narendra, N. A. Foss, “Shutterless fixed pattern noise correction for infrared imaging arrays,” in Technical Issues in Focal Plane DevelopmentW. S. Chan, E. Krikorian, eds., Proc. SPIE282, 44–51 (1981).
    [CrossRef]
  12. J. G. Harris, “Continuous-time calibration of VLSI sensors for gain and offset variations,” in International Symposium on Aerospace and Dual-Use Photonics, Smart Focal Plane Arrays and Focal Plane Array Testing, M. Wigdor, M. A. Massie, eds. Proc. SPIE2474, 23–33 (1995).
    [CrossRef]
  13. J. G. Harris, Y.-M. Chiang, “Nonuniformity correction using constant average statistics constraint: analog and digital implementations,” in Infrared Technology and Applications XXIII, B. F. Anderson, M. Strojnik, eds. Proc. SPIE3061, 895–905 (1997).
    [CrossRef]
  14. S. Cain, E. Armstrong, B. Yasuda, “Joint estimation of image, shifts, and non-uniformities from infrared images,” in Proceedings of the 1997 Meeting of the Infrared Information Symposium (IRIS) Specialty Group on Passive Sensors (Infrared Information Analysis Center, Ann Arbor, Mich., 1997), Vol. 1, pp. 121–132.
  15. M. M. Hayat, S. N. Torres, E. Armstrong, S. C. Cain, B. Yasuda, “Statistical algorithm for nonuniformity correction in focal-plane arrays,” Appl. Opt. 38, 772–780 (1999).
    [CrossRef]
  16. M. Irani, S. Peleg, “Improving resolution by image registration,” CVGIP: Graph. Models Image Process. 53, 231–239 (1991).
    [CrossRef]
  17. R. C. Hardie, K. J. Barnard, J. G. Bognar, E. E. Armstrong, E. A. Watson, “High resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system,” Opt. Eng. 37, 247–260 (1998).
    [CrossRef]
  18. C. W. Therrien, Discrete Random Signals and Statistical Signal Processing (Prentice Hall, Englewood Cliffs, N.J., 1992).
  19. E. E. Armstrong, M. M. Hayat, R. C. Hardie, S. Torres, B. Yasuda, “The advantage of non-uniformity correction pre-processing on infrared image registration,” in Applications of Digital Image Processing XXII, A. G. TescherLockheed Martin Mission Systems, eds., Proc. SPIE3808, 156–161 (1999).

1999 (1)

1998 (1)

R. C. Hardie, K. J. Barnard, J. G. Bognar, E. E. Armstrong, E. A. Watson, “High resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system,” Opt. Eng. 37, 247–260 (1998).
[CrossRef]

1995 (1)

M. Schulz, L. Caldwell, “Nonuniformity correction and correctability of infrared focal plane arrays,” Inf. Phys. Technol. 36, 763–777 (1995).
[CrossRef]

1993 (1)

D. L. Perry, E. L. Dereniak, “Linear theory of nonuniformity correction in infrared staring sensors,” Opt. Eng. 32, 1853–1859 (1993).
[CrossRef]

1991 (1)

M. Irani, S. Peleg, “Improving resolution by image registration,” CVGIP: Graph. Models Image Process. 53, 231–239 (1991).
[CrossRef]

1985 (1)

A. F. Milton, F. R. Barone, M. R. Kruer, “Influence of nonuniformity on infrared focal plane array performance,” Opt. Eng. 24, 855–862 (1985).
[CrossRef]

Armstrong, E.

M. M. Hayat, S. N. Torres, E. Armstrong, S. C. Cain, B. Yasuda, “Statistical algorithm for nonuniformity correction in focal-plane arrays,” Appl. Opt. 38, 772–780 (1999).
[CrossRef]

S. Cain, E. Armstrong, B. Yasuda, “Joint estimation of image, shifts, and non-uniformities from infrared images,” in Proceedings of the 1997 Meeting of the Infrared Information Symposium (IRIS) Specialty Group on Passive Sensors (Infrared Information Analysis Center, Ann Arbor, Mich., 1997), Vol. 1, pp. 121–132.

Armstrong, E. E.

R. C. Hardie, K. J. Barnard, J. G. Bognar, E. E. Armstrong, E. A. Watson, “High resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system,” Opt. Eng. 37, 247–260 (1998).
[CrossRef]

E. E. Armstrong, M. M. Hayat, R. C. Hardie, S. Torres, B. Yasuda, “The advantage of non-uniformity correction pre-processing on infrared image registration,” in Applications of Digital Image Processing XXII, A. G. TescherLockheed Martin Mission Systems, eds., Proc. SPIE3808, 156–161 (1999).

Barnard, K. J.

R. C. Hardie, K. J. Barnard, J. G. Bognar, E. E. Armstrong, E. A. Watson, “High resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system,” Opt. Eng. 37, 247–260 (1998).
[CrossRef]

Barone, F. R.

A. F. Milton, F. R. Barone, M. R. Kruer, “Influence of nonuniformity on infrared focal plane array performance,” Opt. Eng. 24, 855–862 (1985).
[CrossRef]

Bognar, J. G.

R. C. Hardie, K. J. Barnard, J. G. Bognar, E. E. Armstrong, E. A. Watson, “High resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system,” Opt. Eng. 37, 247–260 (1998).
[CrossRef]

Cain, S.

S. Cain, E. Armstrong, B. Yasuda, “Joint estimation of image, shifts, and non-uniformities from infrared images,” in Proceedings of the 1997 Meeting of the Infrared Information Symposium (IRIS) Specialty Group on Passive Sensors (Infrared Information Analysis Center, Ann Arbor, Mich., 1997), Vol. 1, pp. 121–132.

Cain, S. C.

Caldwell, L.

M. Schulz, L. Caldwell, “Nonuniformity correction and correctability of infrared focal plane arrays,” Inf. Phys. Technol. 36, 763–777 (1995).
[CrossRef]

Caulfield, J.

D. Scribner, K. Sarkady, M. Kruer, J. Caulfield, J. Hunt, M. Colbert, M. Descour, “Adaptive nonuniformity correction for infrared focal plane arrays using neural networks,” in Infrared Sensors: Detectors, Electronics, and Signal Processing, T. S. Jayadev, ed., Proc. SPIE1541, 100–110 (1991).

Caulfield, J. T.

D. A. Scribner, K. A. Sarkady, M. R. Kruer, J. T. Caulfield, J. D. Hunt, M. Colbert, M. Descour, “Adaptive retina-like preprocessing for imaging detector arrays,” in Proceedings of the IEEE International Conference on Neural Networks (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 1955–1960.
[CrossRef]

D. A. Scribner, K. A. Sarkay, J. T. Caulfield, M. R. Kruer, G. Katz, C. J. Gridley, “Nonuniformity correction for staring IR focal plane arrays using scene-based techniques,” in Infrared Detectors and Focal Plane Arrays, E. L. Dereniak, R. E. Sampson, eds., Proc. SPIE1308, 224–233 (1990).

Chiang, Y.-M.

J. G. Harris, Y.-M. Chiang, “Nonuniformity correction using constant average statistics constraint: analog and digital implementations,” in Infrared Technology and Applications XXIII, B. F. Anderson, M. Strojnik, eds. Proc. SPIE3061, 895–905 (1997).
[CrossRef]

Colbert, M.

D. A. Scribner, K. A. Sarkady, M. R. Kruer, J. T. Caulfield, J. D. Hunt, M. Colbert, M. Descour, “Adaptive retina-like preprocessing for imaging detector arrays,” in Proceedings of the IEEE International Conference on Neural Networks (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 1955–1960.
[CrossRef]

D. Scribner, K. Sarkady, M. Kruer, J. Caulfield, J. Hunt, M. Colbert, M. Descour, “Adaptive nonuniformity correction for infrared focal plane arrays using neural networks,” in Infrared Sensors: Detectors, Electronics, and Signal Processing, T. S. Jayadev, ed., Proc. SPIE1541, 100–110 (1991).

Dereniak, E. L.

D. L. Perry, E. L. Dereniak, “Linear theory of nonuniformity correction in infrared staring sensors,” Opt. Eng. 32, 1853–1859 (1993).
[CrossRef]

Descour, M.

D. Scribner, K. Sarkady, M. Kruer, J. Caulfield, J. Hunt, M. Colbert, M. Descour, “Adaptive nonuniformity correction for infrared focal plane arrays using neural networks,” in Infrared Sensors: Detectors, Electronics, and Signal Processing, T. S. Jayadev, ed., Proc. SPIE1541, 100–110 (1991).

D. A. Scribner, K. A. Sarkady, M. R. Kruer, J. T. Caulfield, J. D. Hunt, M. Colbert, M. Descour, “Adaptive retina-like preprocessing for imaging detector arrays,” in Proceedings of the IEEE International Conference on Neural Networks (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 1955–1960.
[CrossRef]

Foss, N. A.

P. M. Narendra, N. A. Foss, “Shutterless fixed pattern noise correction for infrared imaging arrays,” in Technical Issues in Focal Plane DevelopmentW. S. Chan, E. Krikorian, eds., Proc. SPIE282, 44–51 (1981).
[CrossRef]

Gridley, C. J.

D. A. Scribner, K. A. Sarkay, J. T. Caulfield, M. R. Kruer, G. Katz, C. J. Gridley, “Nonuniformity correction for staring IR focal plane arrays using scene-based techniques,” in Infrared Detectors and Focal Plane Arrays, E. L. Dereniak, R. E. Sampson, eds., Proc. SPIE1308, 224–233 (1990).

Gridley, J. C.

D. A. Scribner, M. R. Kruer, J. C. Gridley, “Physical limitations to nonuniformity correction in focal plane arrays,” in Technologies for Optoelectronics, J. M. Bulabois, R. F. Potter, eds., Proc. SPIE869, 185–201 (1987).

Hardie, R. C.

R. C. Hardie, K. J. Barnard, J. G. Bognar, E. E. Armstrong, E. A. Watson, “High resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system,” Opt. Eng. 37, 247–260 (1998).
[CrossRef]

E. E. Armstrong, M. M. Hayat, R. C. Hardie, S. Torres, B. Yasuda, “The advantage of non-uniformity correction pre-processing on infrared image registration,” in Applications of Digital Image Processing XXII, A. G. TescherLockheed Martin Mission Systems, eds., Proc. SPIE3808, 156–161 (1999).

Harris, J. G.

J. G. Harris, Y.-M. Chiang, “Nonuniformity correction using constant average statistics constraint: analog and digital implementations,” in Infrared Technology and Applications XXIII, B. F. Anderson, M. Strojnik, eds. Proc. SPIE3061, 895–905 (1997).
[CrossRef]

J. G. Harris, “Continuous-time calibration of VLSI sensors for gain and offset variations,” in International Symposium on Aerospace and Dual-Use Photonics, Smart Focal Plane Arrays and Focal Plane Array Testing, M. Wigdor, M. A. Massie, eds. Proc. SPIE2474, 23–33 (1995).
[CrossRef]

Hayat, M. M.

M. M. Hayat, S. N. Torres, E. Armstrong, S. C. Cain, B. Yasuda, “Statistical algorithm for nonuniformity correction in focal-plane arrays,” Appl. Opt. 38, 772–780 (1999).
[CrossRef]

E. E. Armstrong, M. M. Hayat, R. C. Hardie, S. Torres, B. Yasuda, “The advantage of non-uniformity correction pre-processing on infrared image registration,” in Applications of Digital Image Processing XXII, A. G. TescherLockheed Martin Mission Systems, eds., Proc. SPIE3808, 156–161 (1999).

Holst, G. C.

G. C. Holst, CCD Arrays, Cameras, and Displays (SPIE Optical Engineering Press, Bellingham, Wash., 1996).

Hunt, J.

D. Scribner, K. Sarkady, M. Kruer, J. Caulfield, J. Hunt, M. Colbert, M. Descour, “Adaptive nonuniformity correction for infrared focal plane arrays using neural networks,” in Infrared Sensors: Detectors, Electronics, and Signal Processing, T. S. Jayadev, ed., Proc. SPIE1541, 100–110 (1991).

Hunt, J. D.

D. A. Scribner, K. A. Sarkady, M. R. Kruer, J. T. Caulfield, J. D. Hunt, M. Colbert, M. Descour, “Adaptive retina-like preprocessing for imaging detector arrays,” in Proceedings of the IEEE International Conference on Neural Networks (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 1955–1960.
[CrossRef]

Irani, M.

M. Irani, S. Peleg, “Improving resolution by image registration,” CVGIP: Graph. Models Image Process. 53, 231–239 (1991).
[CrossRef]

Katz, G.

D. A. Scribner, K. A. Sarkay, J. T. Caulfield, M. R. Kruer, G. Katz, C. J. Gridley, “Nonuniformity correction for staring IR focal plane arrays using scene-based techniques,” in Infrared Detectors and Focal Plane Arrays, E. L. Dereniak, R. E. Sampson, eds., Proc. SPIE1308, 224–233 (1990).

Kruer, M.

D. Scribner, K. Sarkady, M. Kruer, J. Caulfield, J. Hunt, M. Colbert, M. Descour, “Adaptive nonuniformity correction for infrared focal plane arrays using neural networks,” in Infrared Sensors: Detectors, Electronics, and Signal Processing, T. S. Jayadev, ed., Proc. SPIE1541, 100–110 (1991).

Kruer, M. R.

A. F. Milton, F. R. Barone, M. R. Kruer, “Influence of nonuniformity on infrared focal plane array performance,” Opt. Eng. 24, 855–862 (1985).
[CrossRef]

D. A. Scribner, M. R. Kruer, J. C. Gridley, “Physical limitations to nonuniformity correction in focal plane arrays,” in Technologies for Optoelectronics, J. M. Bulabois, R. F. Potter, eds., Proc. SPIE869, 185–201 (1987).

D. A. Scribner, K. A. Sarkay, J. T. Caulfield, M. R. Kruer, G. Katz, C. J. Gridley, “Nonuniformity correction for staring IR focal plane arrays using scene-based techniques,” in Infrared Detectors and Focal Plane Arrays, E. L. Dereniak, R. E. Sampson, eds., Proc. SPIE1308, 224–233 (1990).

D. A. Scribner, K. A. Sarkady, M. R. Kruer, J. T. Caulfield, J. D. Hunt, M. Colbert, M. Descour, “Adaptive retina-like preprocessing for imaging detector arrays,” in Proceedings of the IEEE International Conference on Neural Networks (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 1955–1960.
[CrossRef]

Milton, A. F.

A. F. Milton, F. R. Barone, M. R. Kruer, “Influence of nonuniformity on infrared focal plane array performance,” Opt. Eng. 24, 855–862 (1985).
[CrossRef]

Narendra, P. M.

P. M. Narendra, N. A. Foss, “Shutterless fixed pattern noise correction for infrared imaging arrays,” in Technical Issues in Focal Plane DevelopmentW. S. Chan, E. Krikorian, eds., Proc. SPIE282, 44–51 (1981).
[CrossRef]

O’Neil, W. F.

W. F. O’Neil, “Experimental verification of dithered scan non-uniformity correction,” in Proceedings of the 1996 Meeting of the Infrared Information Symposium (IRIS) Specialty Group on Passive Sensors (Infrared Information Analysis Center, Ann Arbor, Mich., 1997), Vol. 1, pp. 329–339.

W. F. O’Neil, “Dithered scan detector compensation,” in Proceedings of the 1993 Meeting of the Infrared Information Symposium (IRIS) Specialty Group on Passive Sensors (Infrared Information Analysis Center, Ann Arbor, Mich., 1993).

Peleg, S.

M. Irani, S. Peleg, “Improving resolution by image registration,” CVGIP: Graph. Models Image Process. 53, 231–239 (1991).
[CrossRef]

Perry, D. L.

D. L. Perry, E. L. Dereniak, “Linear theory of nonuniformity correction in infrared staring sensors,” Opt. Eng. 32, 1853–1859 (1993).
[CrossRef]

Sarkady, K.

D. Scribner, K. Sarkady, M. Kruer, J. Caulfield, J. Hunt, M. Colbert, M. Descour, “Adaptive nonuniformity correction for infrared focal plane arrays using neural networks,” in Infrared Sensors: Detectors, Electronics, and Signal Processing, T. S. Jayadev, ed., Proc. SPIE1541, 100–110 (1991).

Sarkady, K. A.

D. A. Scribner, K. A. Sarkady, M. R. Kruer, J. T. Caulfield, J. D. Hunt, M. Colbert, M. Descour, “Adaptive retina-like preprocessing for imaging detector arrays,” in Proceedings of the IEEE International Conference on Neural Networks (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 1955–1960.
[CrossRef]

Sarkay, K. A.

D. A. Scribner, K. A. Sarkay, J. T. Caulfield, M. R. Kruer, G. Katz, C. J. Gridley, “Nonuniformity correction for staring IR focal plane arrays using scene-based techniques,” in Infrared Detectors and Focal Plane Arrays, E. L. Dereniak, R. E. Sampson, eds., Proc. SPIE1308, 224–233 (1990).

Schulz, M.

M. Schulz, L. Caldwell, “Nonuniformity correction and correctability of infrared focal plane arrays,” Inf. Phys. Technol. 36, 763–777 (1995).
[CrossRef]

Scribner, D.

D. Scribner, K. Sarkady, M. Kruer, J. Caulfield, J. Hunt, M. Colbert, M. Descour, “Adaptive nonuniformity correction for infrared focal plane arrays using neural networks,” in Infrared Sensors: Detectors, Electronics, and Signal Processing, T. S. Jayadev, ed., Proc. SPIE1541, 100–110 (1991).

Scribner, D. A.

D. A. Scribner, K. A. Sarkay, J. T. Caulfield, M. R. Kruer, G. Katz, C. J. Gridley, “Nonuniformity correction for staring IR focal plane arrays using scene-based techniques,” in Infrared Detectors and Focal Plane Arrays, E. L. Dereniak, R. E. Sampson, eds., Proc. SPIE1308, 224–233 (1990).

D. A. Scribner, M. R. Kruer, J. C. Gridley, “Physical limitations to nonuniformity correction in focal plane arrays,” in Technologies for Optoelectronics, J. M. Bulabois, R. F. Potter, eds., Proc. SPIE869, 185–201 (1987).

D. A. Scribner, K. A. Sarkady, M. R. Kruer, J. T. Caulfield, J. D. Hunt, M. Colbert, M. Descour, “Adaptive retina-like preprocessing for imaging detector arrays,” in Proceedings of the IEEE International Conference on Neural Networks (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 1955–1960.
[CrossRef]

Therrien, C. W.

C. W. Therrien, Discrete Random Signals and Statistical Signal Processing (Prentice Hall, Englewood Cliffs, N.J., 1992).

Torres, S.

E. E. Armstrong, M. M. Hayat, R. C. Hardie, S. Torres, B. Yasuda, “The advantage of non-uniformity correction pre-processing on infrared image registration,” in Applications of Digital Image Processing XXII, A. G. TescherLockheed Martin Mission Systems, eds., Proc. SPIE3808, 156–161 (1999).

Torres, S. N.

Watson, E. A.

R. C. Hardie, K. J. Barnard, J. G. Bognar, E. E. Armstrong, E. A. Watson, “High resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system,” Opt. Eng. 37, 247–260 (1998).
[CrossRef]

Yasuda, B.

M. M. Hayat, S. N. Torres, E. Armstrong, S. C. Cain, B. Yasuda, “Statistical algorithm for nonuniformity correction in focal-plane arrays,” Appl. Opt. 38, 772–780 (1999).
[CrossRef]

E. E. Armstrong, M. M. Hayat, R. C. Hardie, S. Torres, B. Yasuda, “The advantage of non-uniformity correction pre-processing on infrared image registration,” in Applications of Digital Image Processing XXII, A. G. TescherLockheed Martin Mission Systems, eds., Proc. SPIE3808, 156–161 (1999).

S. Cain, E. Armstrong, B. Yasuda, “Joint estimation of image, shifts, and non-uniformities from infrared images,” in Proceedings of the 1997 Meeting of the Infrared Information Symposium (IRIS) Specialty Group on Passive Sensors (Infrared Information Analysis Center, Ann Arbor, Mich., 1997), Vol. 1, pp. 121–132.

Appl. Opt. (1)

CVGIP: Graph. Models Image Process. (1)

M. Irani, S. Peleg, “Improving resolution by image registration,” CVGIP: Graph. Models Image Process. 53, 231–239 (1991).
[CrossRef]

Inf. Phys. Technol. (1)

M. Schulz, L. Caldwell, “Nonuniformity correction and correctability of infrared focal plane arrays,” Inf. Phys. Technol. 36, 763–777 (1995).
[CrossRef]

Opt. Eng. (3)

R. C. Hardie, K. J. Barnard, J. G. Bognar, E. E. Armstrong, E. A. Watson, “High resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system,” Opt. Eng. 37, 247–260 (1998).
[CrossRef]

A. F. Milton, F. R. Barone, M. R. Kruer, “Influence of nonuniformity on infrared focal plane array performance,” Opt. Eng. 24, 855–862 (1985).
[CrossRef]

D. L. Perry, E. L. Dereniak, “Linear theory of nonuniformity correction in infrared staring sensors,” Opt. Eng. 32, 1853–1859 (1993).
[CrossRef]

Other (13)

G. C. Holst, CCD Arrays, Cameras, and Displays (SPIE Optical Engineering Press, Bellingham, Wash., 1996).

D. A. Scribner, K. A. Sarkay, J. T. Caulfield, M. R. Kruer, G. Katz, C. J. Gridley, “Nonuniformity correction for staring IR focal plane arrays using scene-based techniques,” in Infrared Detectors and Focal Plane Arrays, E. L. Dereniak, R. E. Sampson, eds., Proc. SPIE1308, 224–233 (1990).

D. A. Scribner, M. R. Kruer, J. C. Gridley, “Physical limitations to nonuniformity correction in focal plane arrays,” in Technologies for Optoelectronics, J. M. Bulabois, R. F. Potter, eds., Proc. SPIE869, 185–201 (1987).

C. W. Therrien, Discrete Random Signals and Statistical Signal Processing (Prentice Hall, Englewood Cliffs, N.J., 1992).

E. E. Armstrong, M. M. Hayat, R. C. Hardie, S. Torres, B. Yasuda, “The advantage of non-uniformity correction pre-processing on infrared image registration,” in Applications of Digital Image Processing XXII, A. G. TescherLockheed Martin Mission Systems, eds., Proc. SPIE3808, 156–161 (1999).

D. A. Scribner, K. A. Sarkady, M. R. Kruer, J. T. Caulfield, J. D. Hunt, M. Colbert, M. Descour, “Adaptive retina-like preprocessing for imaging detector arrays,” in Proceedings of the IEEE International Conference on Neural Networks (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 1955–1960.
[CrossRef]

D. Scribner, K. Sarkady, M. Kruer, J. Caulfield, J. Hunt, M. Colbert, M. Descour, “Adaptive nonuniformity correction for infrared focal plane arrays using neural networks,” in Infrared Sensors: Detectors, Electronics, and Signal Processing, T. S. Jayadev, ed., Proc. SPIE1541, 100–110 (1991).

W. F. O’Neil, “Dithered scan detector compensation,” in Proceedings of the 1993 Meeting of the Infrared Information Symposium (IRIS) Specialty Group on Passive Sensors (Infrared Information Analysis Center, Ann Arbor, Mich., 1993).

W. F. O’Neil, “Experimental verification of dithered scan non-uniformity correction,” in Proceedings of the 1996 Meeting of the Infrared Information Symposium (IRIS) Specialty Group on Passive Sensors (Infrared Information Analysis Center, Ann Arbor, Mich., 1997), Vol. 1, pp. 329–339.

P. M. Narendra, N. A. Foss, “Shutterless fixed pattern noise correction for infrared imaging arrays,” in Technical Issues in Focal Plane DevelopmentW. S. Chan, E. Krikorian, eds., Proc. SPIE282, 44–51 (1981).
[CrossRef]

J. G. Harris, “Continuous-time calibration of VLSI sensors for gain and offset variations,” in International Symposium on Aerospace and Dual-Use Photonics, Smart Focal Plane Arrays and Focal Plane Array Testing, M. Wigdor, M. A. Massie, eds. Proc. SPIE2474, 23–33 (1995).
[CrossRef]

J. G. Harris, Y.-M. Chiang, “Nonuniformity correction using constant average statistics constraint: analog and digital implementations,” in Infrared Technology and Applications XXIII, B. F. Anderson, M. Strojnik, eds. Proc. SPIE3061, 895–905 (1997).
[CrossRef]

S. Cain, E. Armstrong, B. Yasuda, “Joint estimation of image, shifts, and non-uniformities from infrared images,” in Proceedings of the 1997 Meeting of the Infrared Information Symposium (IRIS) Specialty Group on Passive Sensors (Infrared Information Analysis Center, Ann Arbor, Mich., 1997), Vol. 1, pp. 121–132.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Block diagram of proposed NUC algorithm.

Fig. 2
Fig. 2

Two frames showing an example of a motion trajectory. The shaded blocks represent true scene values that move from frame one to frame two. Note that z 2(13) = z 1(8).

Fig. 3
Fig. 3

Example of a three-frame trajectory for the best case. The cross, circle, and square represent different signal values. The bottom figure shows which signal levels are seen by which detectors during the course of the entire trajectory.

Fig. 4
Fig. 4

Standard deviation bounds for the bias estimate error where σ b 2 = 1.

Fig. 5
Fig. 5

Registration accuracy with various levels of gain and bias nonuniformity. MAE, mean absolute error.

Fig. 6
Fig. 6

(a) True frame 1, (b) frame 1 with simulated nonuniformity, (c) motion-compensated temporal average, (d) corrected image with the least-squares parameters.

Fig. 7
Fig. 7

True detector response curves (solid lines) and estimated responses (dashed lines) when observed data has (a) good range (b) poor range. The detector outputs are plotted versus the true scene values and the estimated scene values.

Fig. 8
Fig. 8

Illustration of the process of effective bias correction. (a) Raw detector responses, (b) responses after effective bias correction.

Fig. 9
Fig. 9

Image with effective bias correction.

Fig. 10
Fig. 10

(a) Original FLIR image with nonuniformity, (b) motion-compensated temporal average, (c) estimated biases for each pixel, (d) corrected image.

Fig. 11
Fig. 11

(a) New FLIR image with nonuniformity (b), corrected image with biases calculated from previous data.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

xij=ajzij+bj,
zij=zkti,j,k
fxijx=1zijfazijx * fbx,
zˆij=1Nk=1N xkti,j,k=1Nk=1N ati,j,kzkti,j,k+bti,j,k,
zˆij=1Nk=1N ati,j,kzij+bti,j,k,
zˆ1j=zˆ2t1,j,2==zˆNt1,j,N.
σzˆij2=zijσa2+σb2N.
xij=zij+bj.
bˆij=xij-zˆij
zˆij=zij+1Nk=1N bti,j,k.
bˆij=bj-1Nk=1N bti,j,k,
eij=bj-bˆij=1Nk=1N bti,j,k.
bˆj=1Ni=1N bˆij.
bˆj=bj-1N2i=1Nk=1N bti,j,k.
ej=bj-bˆj=1N2i=1Nk=1N bti,j,k.
σej22N2-1N3σb2.
σej223N+13N3σb2.
zˆicj=xij-bˆj.
zˆij=zij+ηij.
xij=ajzˆij-ηij+bj=ajzˆij+bj-ajηij.
σnij2=aj2σzˆij2=aj2zijσa2+σb2N.
xij=ajzˆij+bj+nij.
Eaj=|xj-Zjaj|2=xj-ZjajTxj-Zjaj,
Zj=zˆ1jzˆ2jzˆNj111T.
aˆj=ajarg min xj-ZjajTxj-Zjaj=ZjTZj-1ZjTxj,
zˆicj=xij-bˆjaˆj.

Metrics