Abstract

A new theoretical derivation that makes it possible to compute the performance of a quasi-three-level longitudinally pumped cw laser is proposed. This theory, which takes into account the laser wave amplification and the pump wave absorption saturation coupling, seems simpler and more accurate than what has been previously published. The model accounts for single-pass, double-pass, and resonant pumping and can be used to characterize the thermal effect in the gain medium. It is also well suited for designing and optimizing such lasers. As an example, the theory is applied to the well-known Yb:YAG gain medium.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Beach, “CW theory of quasi-three level end-pumped laser oscillators,” Opt. Commun. 123, 385–393 (1995).
    [CrossRef]
  2. C. D. Marshall, L. K. Smith, R. J. Beach, M. A. Emanuel, K. I. Schaffers, J. Skidmore, S. A. Payne, B. H. T. Chai, “Diode-pumped ytterbium-doped Sr5(PO4)3F laser performance,” IEEE J. Quantum Electron. 32, 650–656 (1996).
    [CrossRef]
  3. R. Koch, W. A. Clarkson, D. C. Hanna, S. Jiang, M. J. Myers, D. Rhonehouse, S. J. Hamlin, U. Griebner, H. Schönnagel, “Efficient room temperature cw Yb:glass laser pumped by a 946 nm Nd:YAG laser,” Opt. Commun. 134, 175–178 (1997).
    [CrossRef]
  4. N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, G. Huber, “Pulsed laser operation of Yb-doped KY(WO2)2 and KGd(WO4)2,” Opt. Lett. 22, 1317–1319 (1997).
    [CrossRef]
  5. C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, K. S. Jancaitis, “High-average-power 1-µm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quantum Electron. 34, 2010–2019 (1998).
    [CrossRef]
  6. P. M. W. French, N. H. Rizvi, J. R. Taylor, A. V. Shestakov, “Continuous-wave mode-locked Cr4+:YAG laser,” Opt. Lett. 18, 39–41 (1993).
    [CrossRef] [PubMed]
  7. P. J. Conlon, Y. P. Tong, P. M. W. French, J. R. Taylor, A. V. Shestakov, “Passive mode locking and dispersion measurement of a sub-100-fs Cr4+:YAG laser,” Opt. Lett. 19, 1468–1470 (1994).
    [CrossRef] [PubMed]
  8. R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupte, K. T. Cheng, A. Burger, “Cr2+-doped zinc chalgogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–617 (1997).
    [CrossRef]
  9. G. J. Wagner, T. J. Carrig, R. H. Page, K. I. Schaffers, J. O. Ndap, X. Ma, A. Burger, “Continuous-wave broadly tunable Cr2+:ZnSe laser,” Opt. Lett. 24, 19–21 (1999).
    [CrossRef]
  10. G. L. Bourdet, G. Lescroart, “Theoretical modeling and design of a Tm:YVO4 microchip laser,” Opt. Commun. 149, 404–414 (1998).
    [CrossRef]
  11. G. L. Bourdet, G. Lescroart, “Theoretical modeling and design of a Tm, Ho:YLiF4 microchip laser,” Appl. Opt. 38, 3275–3281 (1999).
    [CrossRef]
  12. W. W. Rigrod, “Gain saturation and output power of optical masers,” J. Appl. Phys. 34, 2602–2609 (1963).
    [CrossRef]
  13. P. Peterson, A. Gavrielides, P. M. Sharma, “CW theory of a laser diode-pumped two-manifold solid state laser,” Opt. Commun. 109, 282–287 (1994).
    [CrossRef]
  14. P. Peterson, P. M. Sharma, “Back-reflection pumping versus contradirectional pumping in upconversion solid state lasers,” Opt. Commun. 146, 189–195 (1998).
    [CrossRef]
  15. G. L. Bourdet, G. Lescroart, “Theoretical modeling of mode formation in Tm3+:YVO4 microchip lasers,” Opt. Commun. 150, 136–140 (1998).
    [CrossRef]

1999 (2)

1998 (4)

G. L. Bourdet, G. Lescroart, “Theoretical modeling and design of a Tm:YVO4 microchip laser,” Opt. Commun. 149, 404–414 (1998).
[CrossRef]

P. Peterson, P. M. Sharma, “Back-reflection pumping versus contradirectional pumping in upconversion solid state lasers,” Opt. Commun. 146, 189–195 (1998).
[CrossRef]

G. L. Bourdet, G. Lescroart, “Theoretical modeling of mode formation in Tm3+:YVO4 microchip lasers,” Opt. Commun. 150, 136–140 (1998).
[CrossRef]

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, K. S. Jancaitis, “High-average-power 1-µm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quantum Electron. 34, 2010–2019 (1998).
[CrossRef]

1997 (3)

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupte, K. T. Cheng, A. Burger, “Cr2+-doped zinc chalgogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–617 (1997).
[CrossRef]

R. Koch, W. A. Clarkson, D. C. Hanna, S. Jiang, M. J. Myers, D. Rhonehouse, S. J. Hamlin, U. Griebner, H. Schönnagel, “Efficient room temperature cw Yb:glass laser pumped by a 946 nm Nd:YAG laser,” Opt. Commun. 134, 175–178 (1997).
[CrossRef]

N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, G. Huber, “Pulsed laser operation of Yb-doped KY(WO2)2 and KGd(WO4)2,” Opt. Lett. 22, 1317–1319 (1997).
[CrossRef]

1996 (1)

C. D. Marshall, L. K. Smith, R. J. Beach, M. A. Emanuel, K. I. Schaffers, J. Skidmore, S. A. Payne, B. H. T. Chai, “Diode-pumped ytterbium-doped Sr5(PO4)3F laser performance,” IEEE J. Quantum Electron. 32, 650–656 (1996).
[CrossRef]

1995 (1)

R. J. Beach, “CW theory of quasi-three level end-pumped laser oscillators,” Opt. Commun. 123, 385–393 (1995).
[CrossRef]

1994 (2)

P. J. Conlon, Y. P. Tong, P. M. W. French, J. R. Taylor, A. V. Shestakov, “Passive mode locking and dispersion measurement of a sub-100-fs Cr4+:YAG laser,” Opt. Lett. 19, 1468–1470 (1994).
[CrossRef] [PubMed]

P. Peterson, A. Gavrielides, P. M. Sharma, “CW theory of a laser diode-pumped two-manifold solid state laser,” Opt. Commun. 109, 282–287 (1994).
[CrossRef]

1993 (1)

1963 (1)

W. W. Rigrod, “Gain saturation and output power of optical masers,” J. Appl. Phys. 34, 2602–2609 (1963).
[CrossRef]

Beach, R. J.

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, K. S. Jancaitis, “High-average-power 1-µm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quantum Electron. 34, 2010–2019 (1998).
[CrossRef]

C. D. Marshall, L. K. Smith, R. J. Beach, M. A. Emanuel, K. I. Schaffers, J. Skidmore, S. A. Payne, B. H. T. Chai, “Diode-pumped ytterbium-doped Sr5(PO4)3F laser performance,” IEEE J. Quantum Electron. 32, 650–656 (1996).
[CrossRef]

R. J. Beach, “CW theory of quasi-three level end-pumped laser oscillators,” Opt. Commun. 123, 385–393 (1995).
[CrossRef]

Bibeau, C.

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, K. S. Jancaitis, “High-average-power 1-µm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quantum Electron. 34, 2010–2019 (1998).
[CrossRef]

Bourdet, G. L.

G. L. Bourdet, G. Lescroart, “Theoretical modeling and design of a Tm, Ho:YLiF4 microchip laser,” Appl. Opt. 38, 3275–3281 (1999).
[CrossRef]

G. L. Bourdet, G. Lescroart, “Theoretical modeling and design of a Tm:YVO4 microchip laser,” Opt. Commun. 149, 404–414 (1998).
[CrossRef]

G. L. Bourdet, G. Lescroart, “Theoretical modeling of mode formation in Tm3+:YVO4 microchip lasers,” Opt. Commun. 150, 136–140 (1998).
[CrossRef]

Burger, A.

G. J. Wagner, T. J. Carrig, R. H. Page, K. I. Schaffers, J. O. Ndap, X. Ma, A. Burger, “Continuous-wave broadly tunable Cr2+:ZnSe laser,” Opt. Lett. 24, 19–21 (1999).
[CrossRef]

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupte, K. T. Cheng, A. Burger, “Cr2+-doped zinc chalgogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–617 (1997).
[CrossRef]

Carrig, T. J.

Chai, B. H. T.

C. D. Marshall, L. K. Smith, R. J. Beach, M. A. Emanuel, K. I. Schaffers, J. Skidmore, S. A. Payne, B. H. T. Chai, “Diode-pumped ytterbium-doped Sr5(PO4)3F laser performance,” IEEE J. Quantum Electron. 32, 650–656 (1996).
[CrossRef]

Cheng, K. T.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupte, K. T. Cheng, A. Burger, “Cr2+-doped zinc chalgogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–617 (1997).
[CrossRef]

Clarkson, W. A.

R. Koch, W. A. Clarkson, D. C. Hanna, S. Jiang, M. J. Myers, D. Rhonehouse, S. J. Hamlin, U. Griebner, H. Schönnagel, “Efficient room temperature cw Yb:glass laser pumped by a 946 nm Nd:YAG laser,” Opt. Commun. 134, 175–178 (1997).
[CrossRef]

Conlon, P. J.

DeLoach, L. D.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupte, K. T. Cheng, A. Burger, “Cr2+-doped zinc chalgogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–617 (1997).
[CrossRef]

Ebbers, C. A.

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, K. S. Jancaitis, “High-average-power 1-µm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quantum Electron. 34, 2010–2019 (1998).
[CrossRef]

Emanuel, M. A.

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, K. S. Jancaitis, “High-average-power 1-µm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quantum Electron. 34, 2010–2019 (1998).
[CrossRef]

C. D. Marshall, L. K. Smith, R. J. Beach, M. A. Emanuel, K. I. Schaffers, J. Skidmore, S. A. Payne, B. H. T. Chai, “Diode-pumped ytterbium-doped Sr5(PO4)3F laser performance,” IEEE J. Quantum Electron. 32, 650–656 (1996).
[CrossRef]

French, P. M. W.

Gavrielides, A.

P. Peterson, A. Gavrielides, P. M. Sharma, “CW theory of a laser diode-pumped two-manifold solid state laser,” Opt. Commun. 109, 282–287 (1994).
[CrossRef]

Griebner, U.

R. Koch, W. A. Clarkson, D. C. Hanna, S. Jiang, M. J. Myers, D. Rhonehouse, S. J. Hamlin, U. Griebner, H. Schönnagel, “Efficient room temperature cw Yb:glass laser pumped by a 946 nm Nd:YAG laser,” Opt. Commun. 134, 175–178 (1997).
[CrossRef]

Hamlin, S. J.

R. Koch, W. A. Clarkson, D. C. Hanna, S. Jiang, M. J. Myers, D. Rhonehouse, S. J. Hamlin, U. Griebner, H. Schönnagel, “Efficient room temperature cw Yb:glass laser pumped by a 946 nm Nd:YAG laser,” Opt. Commun. 134, 175–178 (1997).
[CrossRef]

Hanna, D. C.

R. Koch, W. A. Clarkson, D. C. Hanna, S. Jiang, M. J. Myers, D. Rhonehouse, S. J. Hamlin, U. Griebner, H. Schönnagel, “Efficient room temperature cw Yb:glass laser pumped by a 946 nm Nd:YAG laser,” Opt. Commun. 134, 175–178 (1997).
[CrossRef]

Huber, G.

Jancaitis, K. S.

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, K. S. Jancaitis, “High-average-power 1-µm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quantum Electron. 34, 2010–2019 (1998).
[CrossRef]

Jiang, S.

R. Koch, W. A. Clarkson, D. C. Hanna, S. Jiang, M. J. Myers, D. Rhonehouse, S. J. Hamlin, U. Griebner, H. Schönnagel, “Efficient room temperature cw Yb:glass laser pumped by a 946 nm Nd:YAG laser,” Opt. Commun. 134, 175–178 (1997).
[CrossRef]

Koch, R.

R. Koch, W. A. Clarkson, D. C. Hanna, S. Jiang, M. J. Myers, D. Rhonehouse, S. J. Hamlin, U. Griebner, H. Schönnagel, “Efficient room temperature cw Yb:glass laser pumped by a 946 nm Nd:YAG laser,” Opt. Commun. 134, 175–178 (1997).
[CrossRef]

Krupte, W. F.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupte, K. T. Cheng, A. Burger, “Cr2+-doped zinc chalgogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–617 (1997).
[CrossRef]

Kuleshov, N. V.

Lagatsky, A. A.

Lescroart, G.

G. L. Bourdet, G. Lescroart, “Theoretical modeling and design of a Tm, Ho:YLiF4 microchip laser,” Appl. Opt. 38, 3275–3281 (1999).
[CrossRef]

G. L. Bourdet, G. Lescroart, “Theoretical modeling and design of a Tm:YVO4 microchip laser,” Opt. Commun. 149, 404–414 (1998).
[CrossRef]

G. L. Bourdet, G. Lescroart, “Theoretical modeling of mode formation in Tm3+:YVO4 microchip lasers,” Opt. Commun. 150, 136–140 (1998).
[CrossRef]

Ma, X.

Marshall, C. D.

C. D. Marshall, L. K. Smith, R. J. Beach, M. A. Emanuel, K. I. Schaffers, J. Skidmore, S. A. Payne, B. H. T. Chai, “Diode-pumped ytterbium-doped Sr5(PO4)3F laser performance,” IEEE J. Quantum Electron. 32, 650–656 (1996).
[CrossRef]

Mikhailov, V. P.

Mitchell, S. C.

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, K. S. Jancaitis, “High-average-power 1-µm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quantum Electron. 34, 2010–2019 (1998).
[CrossRef]

Myers, M. J.

R. Koch, W. A. Clarkson, D. C. Hanna, S. Jiang, M. J. Myers, D. Rhonehouse, S. J. Hamlin, U. Griebner, H. Schönnagel, “Efficient room temperature cw Yb:glass laser pumped by a 946 nm Nd:YAG laser,” Opt. Commun. 134, 175–178 (1997).
[CrossRef]

Ndap, J. O.

Page, R. H.

G. J. Wagner, T. J. Carrig, R. H. Page, K. I. Schaffers, J. O. Ndap, X. Ma, A. Burger, “Continuous-wave broadly tunable Cr2+:ZnSe laser,” Opt. Lett. 24, 19–21 (1999).
[CrossRef]

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupte, K. T. Cheng, A. Burger, “Cr2+-doped zinc chalgogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–617 (1997).
[CrossRef]

Patel, F. D.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupte, K. T. Cheng, A. Burger, “Cr2+-doped zinc chalgogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–617 (1997).
[CrossRef]

Payne, S. A.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupte, K. T. Cheng, A. Burger, “Cr2+-doped zinc chalgogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–617 (1997).
[CrossRef]

C. D. Marshall, L. K. Smith, R. J. Beach, M. A. Emanuel, K. I. Schaffers, J. Skidmore, S. A. Payne, B. H. T. Chai, “Diode-pumped ytterbium-doped Sr5(PO4)3F laser performance,” IEEE J. Quantum Electron. 32, 650–656 (1996).
[CrossRef]

Peterson, P.

P. Peterson, P. M. Sharma, “Back-reflection pumping versus contradirectional pumping in upconversion solid state lasers,” Opt. Commun. 146, 189–195 (1998).
[CrossRef]

P. Peterson, A. Gavrielides, P. M. Sharma, “CW theory of a laser diode-pumped two-manifold solid state laser,” Opt. Commun. 109, 282–287 (1994).
[CrossRef]

Podlipensky, A. V.

Rhonehouse, D.

R. Koch, W. A. Clarkson, D. C. Hanna, S. Jiang, M. J. Myers, D. Rhonehouse, S. J. Hamlin, U. Griebner, H. Schönnagel, “Efficient room temperature cw Yb:glass laser pumped by a 946 nm Nd:YAG laser,” Opt. Commun. 134, 175–178 (1997).
[CrossRef]

Rigrod, W. W.

W. W. Rigrod, “Gain saturation and output power of optical masers,” J. Appl. Phys. 34, 2602–2609 (1963).
[CrossRef]

Rizvi, N. H.

Schaffers, K. I.

G. J. Wagner, T. J. Carrig, R. H. Page, K. I. Schaffers, J. O. Ndap, X. Ma, A. Burger, “Continuous-wave broadly tunable Cr2+:ZnSe laser,” Opt. Lett. 24, 19–21 (1999).
[CrossRef]

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupte, K. T. Cheng, A. Burger, “Cr2+-doped zinc chalgogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–617 (1997).
[CrossRef]

C. D. Marshall, L. K. Smith, R. J. Beach, M. A. Emanuel, K. I. Schaffers, J. Skidmore, S. A. Payne, B. H. T. Chai, “Diode-pumped ytterbium-doped Sr5(PO4)3F laser performance,” IEEE J. Quantum Electron. 32, 650–656 (1996).
[CrossRef]

Schönnagel, H.

R. Koch, W. A. Clarkson, D. C. Hanna, S. Jiang, M. J. Myers, D. Rhonehouse, S. J. Hamlin, U. Griebner, H. Schönnagel, “Efficient room temperature cw Yb:glass laser pumped by a 946 nm Nd:YAG laser,” Opt. Commun. 134, 175–178 (1997).
[CrossRef]

Sharma, P. M.

P. Peterson, P. M. Sharma, “Back-reflection pumping versus contradirectional pumping in upconversion solid state lasers,” Opt. Commun. 146, 189–195 (1998).
[CrossRef]

P. Peterson, A. Gavrielides, P. M. Sharma, “CW theory of a laser diode-pumped two-manifold solid state laser,” Opt. Commun. 109, 282–287 (1994).
[CrossRef]

Shestakov, A. V.

Skidmore, J.

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, K. S. Jancaitis, “High-average-power 1-µm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quantum Electron. 34, 2010–2019 (1998).
[CrossRef]

C. D. Marshall, L. K. Smith, R. J. Beach, M. A. Emanuel, K. I. Schaffers, J. Skidmore, S. A. Payne, B. H. T. Chai, “Diode-pumped ytterbium-doped Sr5(PO4)3F laser performance,” IEEE J. Quantum Electron. 32, 650–656 (1996).
[CrossRef]

Smith, L. K.

C. D. Marshall, L. K. Smith, R. J. Beach, M. A. Emanuel, K. I. Schaffers, J. Skidmore, S. A. Payne, B. H. T. Chai, “Diode-pumped ytterbium-doped Sr5(PO4)3F laser performance,” IEEE J. Quantum Electron. 32, 650–656 (1996).
[CrossRef]

Sutton, S. B.

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, K. S. Jancaitis, “High-average-power 1-µm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quantum Electron. 34, 2010–2019 (1998).
[CrossRef]

Tassano, J. B.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupte, K. T. Cheng, A. Burger, “Cr2+-doped zinc chalgogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–617 (1997).
[CrossRef]

Taylor, J. R.

Tong, Y. P.

Wagner, G. J.

Wilke, G. D.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupte, K. T. Cheng, A. Burger, “Cr2+-doped zinc chalgogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–617 (1997).
[CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (3)

C. D. Marshall, L. K. Smith, R. J. Beach, M. A. Emanuel, K. I. Schaffers, J. Skidmore, S. A. Payne, B. H. T. Chai, “Diode-pumped ytterbium-doped Sr5(PO4)3F laser performance,” IEEE J. Quantum Electron. 32, 650–656 (1996).
[CrossRef]

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, K. S. Jancaitis, “High-average-power 1-µm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quantum Electron. 34, 2010–2019 (1998).
[CrossRef]

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupte, K. T. Cheng, A. Burger, “Cr2+-doped zinc chalgogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–617 (1997).
[CrossRef]

J. Appl. Phys. (1)

W. W. Rigrod, “Gain saturation and output power of optical masers,” J. Appl. Phys. 34, 2602–2609 (1963).
[CrossRef]

Opt. Commun. (6)

P. Peterson, A. Gavrielides, P. M. Sharma, “CW theory of a laser diode-pumped two-manifold solid state laser,” Opt. Commun. 109, 282–287 (1994).
[CrossRef]

P. Peterson, P. M. Sharma, “Back-reflection pumping versus contradirectional pumping in upconversion solid state lasers,” Opt. Commun. 146, 189–195 (1998).
[CrossRef]

G. L. Bourdet, G. Lescroart, “Theoretical modeling of mode formation in Tm3+:YVO4 microchip lasers,” Opt. Commun. 150, 136–140 (1998).
[CrossRef]

R. J. Beach, “CW theory of quasi-three level end-pumped laser oscillators,” Opt. Commun. 123, 385–393 (1995).
[CrossRef]

G. L. Bourdet, G. Lescroart, “Theoretical modeling and design of a Tm:YVO4 microchip laser,” Opt. Commun. 149, 404–414 (1998).
[CrossRef]

R. Koch, W. A. Clarkson, D. C. Hanna, S. Jiang, M. J. Myers, D. Rhonehouse, S. J. Hamlin, U. Griebner, H. Schönnagel, “Efficient room temperature cw Yb:glass laser pumped by a 946 nm Nd:YAG laser,” Opt. Commun. 134, 175–178 (1997).
[CrossRef]

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Stark levels of the two lowest manifolds of Yb3+:YAG.

Fig. 2
Fig. 2

Laser scheme and relevant notations.

Fig. 3
Fig. 3

Laser output intensity (left scale) and pump reflectivity (right scale) versus launched pump intensity.

Fig. 4
Fig. 4

Laser output intensity (left scale), overall efficiencies, and pump reflectivity (right scale) versus the reflectivity of the coupling mirror for double-pass pumping.

Fig. 5
Fig. 5

Laser output intensity (left scale), overall efficiencies, and pump reflectivity (right scale) versus the reflectivity of the coupling mirror for single-pass pumping.

Fig. 6
Fig. 6

Pump intensity threshold (left scale) and overall efficiency (right scale) versus the inverse of the coupling mirror reflectivity.

Fig. 7
Fig. 7

Laser output intensity (left scale), overall efficiencies, and pump reflectivity (right scale) versus the amplifier length for I p +(0) = 1, and a coupling mirror reflectivity optimized for maximum laser output intensity.

Fig. 8
Fig. 8

Laser output intensity (left scale), overall efficiencies, and pump reflectivity (right scale) versus the launched pump intensity for a 5-cm-long amplifier and a coupling mirror reflectivity optimized for maximum laser output intensity.

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

ΔNp=fl1Nl-fu2Nu=NYbfl1+fu2fp-Xu,  ΔNl=fu1Nu-fl3Nl=NYbfl3+fu1Xu-fl,
fp=fl1fl1+fu2, fl=fl3fl3+fu1, Xu=NuNYb.
dNudt=σpcΦpΔNp-Nuτu-σlcΦlΔNl=0,  σpNYbcΦpfl1+fu2fp-Xu-Nuτu-σlNYbcΦlfl3+fu1Xu-fl=0,  σpcΦpfl1+fu2fp-Xu-Xuτu-σlcΦlfl3+fu1Xu-fl=0,
Xuz=fpIpz+flIlz1+Ipz+Ilz,  Iiz=Ii+z+Ii-z,
Isatl=hνlfl3+fu1τuσl, Isatp=hνpfl1+fu2τuσp.
dIlIl=σlΔNldz=g0Xu-fldz,  dIpIp=-σpΔNpdz=-α0fpp-Xudz,
g0=σlNYbfl3+fu1,  α0=σpNYbfl1+fu2.
dIl+Il+=-dIl-Il-  Il+zIl-z=Cl,  dIpl+Ip+=-dIp-Ip-  Ip+zIp-z=Cp.
dIlIl= g0α0dIpIp+g0fp-fldz,  Ilz=CIpzg0α0 expg0fp-flz,
dIlzIlz=g0Ipzfp-fl-fl1+Ipz+Ilzdz,  dIpzIpz=-α0fp+Ilzfp-fl1+Ipz+Ilzdz,  Iiz=Ii+z+Ii-z=Ii+z+CiIi+z,
g0dIlzIlzfp+Ilzfp-fl=-α0dIpIpIpzfp-fl-fl.
G=Il+LIl+0=Il-0Il-L, Γ=Ip+LIp+0=Ip-0Ip-L.
Γ=Gα0/g0 exp-α0fp-flL.
dIp+zIp+z=-α0fpdz1+Ip+z+CpIp+z.
lnIp+z+Ip+z-CpIp+z=-α0fpz+Ct.
Ip+0=α0fpL+lnΓ1-Γ1+RmpΓ.
Cp=Ip+0Ip-0=Ip+LIp-L=RmpIp+L2.
Rpump=Ip-0Ip+0=RmpIp+LIp+02=RmpΓ2.
Cl=Il+0Il-0=Il+02Rml=Il+LIl-L=RslIl+L2,  G=Il+LIl+0=Il-0Il-L=1RmlRsl.
Γ=RmlRslα0/2g0 exp-α0fp-flL.
1g0fplnIl-z+fp-flIl-z-ClIl-z=1α0fllnIp+z-fp-flIp+z-CpIp+z+Ct
Ip-L=RmpIp+L,  Il+0=RmlIl-0,
1g0-fplnG+fp-fl1-G1+RmlGIl-L=1α0-fllnΓ-fp-fl1-Γ1+RmpΓIp+0.
Il-L=g01α0 Ip+01-Γ1+RmpΓ-flL-lnGG-11+RmlG.
Ilaser=1-RslIl+L=1-RslRmlG2Il-L,
Ilaser=1-RslRml×g01α0 Ip+01-Γ1+RmpΓ-flL+lnRmlRsl1-RmlRslRml+Rsl.
gs=g0Ip+01-Γ1+RmpΓα0L-fl.
Ipth0=α0g0flg0L-lnRmlRsl1-Γ1+RmpΓ,
η=dIlaserdIp+0=g0α01-RslRml1-Γ1+RmpΓ1-RmlRslRml+Rsl.
Ipabs=Ip+0-Ip+L+Ip-L-Ip-0=Ip+01-Γ1+RmpΓ.
gs=g0Ipabsα0L-fl.
fl1+fu2=0.72, fl=0.0646, fl3+fu1=1.04, fp=0.844.
σl=3.3×10-20 cm-2, σp=7.6×10-21 cm-2, τu=0.95 ms.
σlNYb=0.726,  σpNYb=0.167,  g0=fl1+fu2σlNYb=0.52 cm-1,  α0=fl3+fu1σpNYb=0.174 cm-1,  Isatl=hνlfl3+fu1τuσl=8.54 kW/cm2,  Isatp=hνpfl1+fu2τuσp=28.1 kW/cm2.

Metrics