Abstract

Diode lasers offer a lightweight, rugged, and economic alternative to other types of laser source, but they often do not provide long-term stability and spectral purity of emission. We have developed a stabilized, near-infrared diode laser source that is capable of as much as 20 mW of single-mode output power for the effective replacement of a He–Ne laser in the path difference measuring system of a high-resolution (1.25-m maximum path difference) Fourier transform spectrometer. Laser characterization has been performed both in laboratory measurements and in flight tests, resulting in a relative frequency stability of better than 10-6 on a 6-h flight.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. R. Peck, S. W. Obetz, “Wavelength or length measurement by reversible fringe counting,” J. Opt. Soc. Am. 43, 505–509 (1953).
    [CrossRef] [PubMed]
  2. M. Hercher, “Ultra-high resolution interferometric sensors,” Opt. Photon. News 11, 24–29 (1991).
    [CrossRef]
  3. A. Barbis, B. Carli, U. Cortesi, A. Gignoli, “Optical path difference measurement for high resolution Fourier spectrometer,” J. Opt. 29, 141–145 (1998).
    [CrossRef]
  4. C. B. Farmer, “High resolution infrared spectroscopy of the Sun and the Earth’s atmosphere from space,” Mikrochim. Akta (Wien) 3, 189–214 (1987).
    [CrossRef]
  5. M. Endemann, “MIPAS instrument concept and performance,” in Proceedings of European Symposium on Atmospheric Measurements from Space (European Space Agency Publications Division, European Space Research and Technology Center, Noordwijk, The Netherlands, 1999).
  6. B. Carli, P. A. R. Ade, U. Cortesi, P. Dickinson, M. Epifani, F. C. Gannaway, A. Gignoli, C. Keim, C. Lee, C. Meny, J. Leotin, F. Mencaraglia, A. G. Murray, I. G. Nolt, M. Ridolfi, “SAFIRE-A: spectroscopy of the atmosphere using far-infrared emission/airborne,” J. Atmos. Oceanic Technol. 16, 1313–1328 (1999).
    [CrossRef]
  7. B. Carli, F. Mencaraglia, A. Bonetti, “Submillimeter high-resolution FT spectrometer for atmospheric studies,” Appl. Opt. 23, 2594–2603 (1984).
    [CrossRef] [PubMed]

1999

B. Carli, P. A. R. Ade, U. Cortesi, P. Dickinson, M. Epifani, F. C. Gannaway, A. Gignoli, C. Keim, C. Lee, C. Meny, J. Leotin, F. Mencaraglia, A. G. Murray, I. G. Nolt, M. Ridolfi, “SAFIRE-A: spectroscopy of the atmosphere using far-infrared emission/airborne,” J. Atmos. Oceanic Technol. 16, 1313–1328 (1999).
[CrossRef]

1998

A. Barbis, B. Carli, U. Cortesi, A. Gignoli, “Optical path difference measurement for high resolution Fourier spectrometer,” J. Opt. 29, 141–145 (1998).
[CrossRef]

1991

M. Hercher, “Ultra-high resolution interferometric sensors,” Opt. Photon. News 11, 24–29 (1991).
[CrossRef]

1987

C. B. Farmer, “High resolution infrared spectroscopy of the Sun and the Earth’s atmosphere from space,” Mikrochim. Akta (Wien) 3, 189–214 (1987).
[CrossRef]

1984

1953

Ade, P. A. R.

B. Carli, P. A. R. Ade, U. Cortesi, P. Dickinson, M. Epifani, F. C. Gannaway, A. Gignoli, C. Keim, C. Lee, C. Meny, J. Leotin, F. Mencaraglia, A. G. Murray, I. G. Nolt, M. Ridolfi, “SAFIRE-A: spectroscopy of the atmosphere using far-infrared emission/airborne,” J. Atmos. Oceanic Technol. 16, 1313–1328 (1999).
[CrossRef]

Barbis, A.

A. Barbis, B. Carli, U. Cortesi, A. Gignoli, “Optical path difference measurement for high resolution Fourier spectrometer,” J. Opt. 29, 141–145 (1998).
[CrossRef]

Bonetti, A.

Carli, B.

B. Carli, P. A. R. Ade, U. Cortesi, P. Dickinson, M. Epifani, F. C. Gannaway, A. Gignoli, C. Keim, C. Lee, C. Meny, J. Leotin, F. Mencaraglia, A. G. Murray, I. G. Nolt, M. Ridolfi, “SAFIRE-A: spectroscopy of the atmosphere using far-infrared emission/airborne,” J. Atmos. Oceanic Technol. 16, 1313–1328 (1999).
[CrossRef]

A. Barbis, B. Carli, U. Cortesi, A. Gignoli, “Optical path difference measurement for high resolution Fourier spectrometer,” J. Opt. 29, 141–145 (1998).
[CrossRef]

B. Carli, F. Mencaraglia, A. Bonetti, “Submillimeter high-resolution FT spectrometer for atmospheric studies,” Appl. Opt. 23, 2594–2603 (1984).
[CrossRef] [PubMed]

Cortesi, U.

B. Carli, P. A. R. Ade, U. Cortesi, P. Dickinson, M. Epifani, F. C. Gannaway, A. Gignoli, C. Keim, C. Lee, C. Meny, J. Leotin, F. Mencaraglia, A. G. Murray, I. G. Nolt, M. Ridolfi, “SAFIRE-A: spectroscopy of the atmosphere using far-infrared emission/airborne,” J. Atmos. Oceanic Technol. 16, 1313–1328 (1999).
[CrossRef]

A. Barbis, B. Carli, U. Cortesi, A. Gignoli, “Optical path difference measurement for high resolution Fourier spectrometer,” J. Opt. 29, 141–145 (1998).
[CrossRef]

Dickinson, P.

B. Carli, P. A. R. Ade, U. Cortesi, P. Dickinson, M. Epifani, F. C. Gannaway, A. Gignoli, C. Keim, C. Lee, C. Meny, J. Leotin, F. Mencaraglia, A. G. Murray, I. G. Nolt, M. Ridolfi, “SAFIRE-A: spectroscopy of the atmosphere using far-infrared emission/airborne,” J. Atmos. Oceanic Technol. 16, 1313–1328 (1999).
[CrossRef]

Endemann, M.

M. Endemann, “MIPAS instrument concept and performance,” in Proceedings of European Symposium on Atmospheric Measurements from Space (European Space Agency Publications Division, European Space Research and Technology Center, Noordwijk, The Netherlands, 1999).

Epifani, M.

B. Carli, P. A. R. Ade, U. Cortesi, P. Dickinson, M. Epifani, F. C. Gannaway, A. Gignoli, C. Keim, C. Lee, C. Meny, J. Leotin, F. Mencaraglia, A. G. Murray, I. G. Nolt, M. Ridolfi, “SAFIRE-A: spectroscopy of the atmosphere using far-infrared emission/airborne,” J. Atmos. Oceanic Technol. 16, 1313–1328 (1999).
[CrossRef]

Farmer, C. B.

C. B. Farmer, “High resolution infrared spectroscopy of the Sun and the Earth’s atmosphere from space,” Mikrochim. Akta (Wien) 3, 189–214 (1987).
[CrossRef]

Gannaway, F. C.

B. Carli, P. A. R. Ade, U. Cortesi, P. Dickinson, M. Epifani, F. C. Gannaway, A. Gignoli, C. Keim, C. Lee, C. Meny, J. Leotin, F. Mencaraglia, A. G. Murray, I. G. Nolt, M. Ridolfi, “SAFIRE-A: spectroscopy of the atmosphere using far-infrared emission/airborne,” J. Atmos. Oceanic Technol. 16, 1313–1328 (1999).
[CrossRef]

Gignoli, A.

B. Carli, P. A. R. Ade, U. Cortesi, P. Dickinson, M. Epifani, F. C. Gannaway, A. Gignoli, C. Keim, C. Lee, C. Meny, J. Leotin, F. Mencaraglia, A. G. Murray, I. G. Nolt, M. Ridolfi, “SAFIRE-A: spectroscopy of the atmosphere using far-infrared emission/airborne,” J. Atmos. Oceanic Technol. 16, 1313–1328 (1999).
[CrossRef]

A. Barbis, B. Carli, U. Cortesi, A. Gignoli, “Optical path difference measurement for high resolution Fourier spectrometer,” J. Opt. 29, 141–145 (1998).
[CrossRef]

Hercher, M.

M. Hercher, “Ultra-high resolution interferometric sensors,” Opt. Photon. News 11, 24–29 (1991).
[CrossRef]

Keim, C.

B. Carli, P. A. R. Ade, U. Cortesi, P. Dickinson, M. Epifani, F. C. Gannaway, A. Gignoli, C. Keim, C. Lee, C. Meny, J. Leotin, F. Mencaraglia, A. G. Murray, I. G. Nolt, M. Ridolfi, “SAFIRE-A: spectroscopy of the atmosphere using far-infrared emission/airborne,” J. Atmos. Oceanic Technol. 16, 1313–1328 (1999).
[CrossRef]

Lee, C.

B. Carli, P. A. R. Ade, U. Cortesi, P. Dickinson, M. Epifani, F. C. Gannaway, A. Gignoli, C. Keim, C. Lee, C. Meny, J. Leotin, F. Mencaraglia, A. G. Murray, I. G. Nolt, M. Ridolfi, “SAFIRE-A: spectroscopy of the atmosphere using far-infrared emission/airborne,” J. Atmos. Oceanic Technol. 16, 1313–1328 (1999).
[CrossRef]

Leotin, J.

B. Carli, P. A. R. Ade, U. Cortesi, P. Dickinson, M. Epifani, F. C. Gannaway, A. Gignoli, C. Keim, C. Lee, C. Meny, J. Leotin, F. Mencaraglia, A. G. Murray, I. G. Nolt, M. Ridolfi, “SAFIRE-A: spectroscopy of the atmosphere using far-infrared emission/airborne,” J. Atmos. Oceanic Technol. 16, 1313–1328 (1999).
[CrossRef]

Mencaraglia, F.

B. Carli, P. A. R. Ade, U. Cortesi, P. Dickinson, M. Epifani, F. C. Gannaway, A. Gignoli, C. Keim, C. Lee, C. Meny, J. Leotin, F. Mencaraglia, A. G. Murray, I. G. Nolt, M. Ridolfi, “SAFIRE-A: spectroscopy of the atmosphere using far-infrared emission/airborne,” J. Atmos. Oceanic Technol. 16, 1313–1328 (1999).
[CrossRef]

B. Carli, F. Mencaraglia, A. Bonetti, “Submillimeter high-resolution FT spectrometer for atmospheric studies,” Appl. Opt. 23, 2594–2603 (1984).
[CrossRef] [PubMed]

Meny, C.

B. Carli, P. A. R. Ade, U. Cortesi, P. Dickinson, M. Epifani, F. C. Gannaway, A. Gignoli, C. Keim, C. Lee, C. Meny, J. Leotin, F. Mencaraglia, A. G. Murray, I. G. Nolt, M. Ridolfi, “SAFIRE-A: spectroscopy of the atmosphere using far-infrared emission/airborne,” J. Atmos. Oceanic Technol. 16, 1313–1328 (1999).
[CrossRef]

Murray, A. G.

B. Carli, P. A. R. Ade, U. Cortesi, P. Dickinson, M. Epifani, F. C. Gannaway, A. Gignoli, C. Keim, C. Lee, C. Meny, J. Leotin, F. Mencaraglia, A. G. Murray, I. G. Nolt, M. Ridolfi, “SAFIRE-A: spectroscopy of the atmosphere using far-infrared emission/airborne,” J. Atmos. Oceanic Technol. 16, 1313–1328 (1999).
[CrossRef]

Nolt, I. G.

B. Carli, P. A. R. Ade, U. Cortesi, P. Dickinson, M. Epifani, F. C. Gannaway, A. Gignoli, C. Keim, C. Lee, C. Meny, J. Leotin, F. Mencaraglia, A. G. Murray, I. G. Nolt, M. Ridolfi, “SAFIRE-A: spectroscopy of the atmosphere using far-infrared emission/airborne,” J. Atmos. Oceanic Technol. 16, 1313–1328 (1999).
[CrossRef]

Obetz, S. W.

Peck, E. R.

Ridolfi, M.

B. Carli, P. A. R. Ade, U. Cortesi, P. Dickinson, M. Epifani, F. C. Gannaway, A. Gignoli, C. Keim, C. Lee, C. Meny, J. Leotin, F. Mencaraglia, A. G. Murray, I. G. Nolt, M. Ridolfi, “SAFIRE-A: spectroscopy of the atmosphere using far-infrared emission/airborne,” J. Atmos. Oceanic Technol. 16, 1313–1328 (1999).
[CrossRef]

Appl. Opt.

J. Atmos. Oceanic Technol.

B. Carli, P. A. R. Ade, U. Cortesi, P. Dickinson, M. Epifani, F. C. Gannaway, A. Gignoli, C. Keim, C. Lee, C. Meny, J. Leotin, F. Mencaraglia, A. G. Murray, I. G. Nolt, M. Ridolfi, “SAFIRE-A: spectroscopy of the atmosphere using far-infrared emission/airborne,” J. Atmos. Oceanic Technol. 16, 1313–1328 (1999).
[CrossRef]

J. Opt.

A. Barbis, B. Carli, U. Cortesi, A. Gignoli, “Optical path difference measurement for high resolution Fourier spectrometer,” J. Opt. 29, 141–145 (1998).
[CrossRef]

J. Opt. Soc. Am.

Mikrochim. Akta (Wien)

C. B. Farmer, “High resolution infrared spectroscopy of the Sun and the Earth’s atmosphere from space,” Mikrochim. Akta (Wien) 3, 189–214 (1987).
[CrossRef]

Opt. Photon. News

M. Hercher, “Ultra-high resolution interferometric sensors,” Opt. Photon. News 11, 24–29 (1991).
[CrossRef]

Other

M. Endemann, “MIPAS instrument concept and performance,” in Proceedings of European Symposium on Atmospheric Measurements from Space (European Space Agency Publications Division, European Space Research and Technology Center, Noordwijk, The Netherlands, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Laser mechanical mounting. The laser head and the mounting block are made of Invar. We achieved thermal stabilization with the Peltier cell and the thermistor. An optical isolator and a beam expander can be incorporated into the system.

Fig. 2
Fig. 2

Typical laser system temperatures and operating parameters as recorded during one of the test flights. The temperature of both the laser and the electronics boxes is in degrees celsius. Output power is expressed in arbitrary units (the average value corresponds to approximately 10 mW). The temperature error signal has a conversion factor of approximately 2.5 a.u. (arbitrary units)/K. The duration of the flight was 5 h 20 min.

Fig. 3
Fig. 3

Measured center frequencies (in terms of wave numbers) of two different atmospheric lines observed in similar conditions during the flight. The graph also shows a linear fit to visualize the line center drift that is due to thermal excursion: approximately 10-4 cm-1 in 5 h 20 min for both lines.

Tables (2)

Tables Icon

Table 1 Characteristics of the Two FT Spectrometers used to Test the Laser System

Tables Icon

Table 2 Review of the Laser Driver Circuit Performancesa

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

δϕL=2πn δνLνL=2πzc δνL,
δϕ0=δϕLν0νL=2πzλ0δνLνL.
δνLνLλ02πz δϕ0=λ02zmaxSNR.
δνLνL1R SNR.
δνLνL  ΔνRν0=1R.
δνLνL<3×10-8δνL<10 MHz
δνLνL  3×10-5δνL  10 GHz

Metrics