Abstract

Low-frequency wavelength modulation spectroscopy is acquired with an external-cavity diode laser. The wavelength modulation is achieved with voltage tuning by means of scanning with the piezoelectric stepper motor, which rotates the end mirror in the laser cavity. With optimum 1-kHz frequency modulation and harmonic detection, direct absorption experiments for the 6S 1/2(F = 4) → 6P 3/2 transition of the cesium D 2 line were carried out. We found that 6f-harmonic detection is best here with a signal-to-noise voltage ratio of 460.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High frequency wavelength modulation spectroscopy with diode lasers,” Opt. Commun. 44, 175–179 (1983).
    [CrossRef]
  2. D. S. Bomse, A. C. Stanton, J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–730 (1992).
    [CrossRef] [PubMed]
  3. J. A. Silver, “Frequency modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
    [CrossRef] [PubMed]
  4. M. Kroll, J. A. Mcclintock, O. Ollinger, “Measurement of gaseous oxygen using diode laser spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
    [CrossRef]
  5. I. Linnerud, P. Kaspersen, T. Jaeger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B 67, 297–305 (1998).
    [CrossRef]
  6. D. S. Bomse, A. C. Stanton, J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparision of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–730 (1992).
    [CrossRef] [PubMed]
  7. L. J. Bonnell, D. T. Cassidy, “Alignment tolerances of short-external-cavity InGaAsP diode lasers for use as tunable single-mode sources,” Appl. Opt. 28, 4622–4628 (1989).
    [CrossRef] [PubMed]
  8. D. T. Cassidy, L. J. Bonnell, “Trace gas detection with short-external-cavity InGaAsP diode lasers transmitter modules operating at 1.58 mm,” Appl. Opt. 27, 2688–2693 (1988).
    [CrossRef] [PubMed]
  9. D. T. Cassidy, D. M. Bruce, B. F. Ventrudo, “Short-external-cavity module for enhanced single-mode tuning of InGaAsP and AlGaAs semiconductor diode lasers,” Rev. Sci. Instrum. 62, 2385–2388 (1991).
    [CrossRef]
  10. Q. V. Nguyen, R. W. Diddle, “High-resolution oxygen absorption spectrum obtained with an external-cavity continuously tunable diode laser,” Opt. Lett. 19, 2134–2136 (1994).
    [CrossRef] [PubMed]
  11. D. M. Bruce, D. T. Cassidy, “Detection of oxygen using short external cavity GaAs semiconductor diode lasers,” Appl. Opt. 29, 1327–1332 (1990).
    [CrossRef] [PubMed]
  12. D. B. Oh, D. C. Hovde, “Wavelength-modulation detection of acetylene with a near-infrared external-cavity diode laser,” Appl. Opt. 34, 7002–7005 (1995).
    [CrossRef] [PubMed]
  13. T. Gustavsson, H. Martin, “Low-cost high-resolution laser spectrometer system in the near-infrared region using a GaAlAs diode laser,” Rev. Sci. Instrum. 57, 1132–1134 (1986).
    [CrossRef]
  14. J. S. Lawrence, D. M. Kane, “Influence of the angular alignment of the optical feedback field on external cavity diode laser characteristics,” Opt. Commun. 159, 316–324 (1999).
    [CrossRef]
  15. K. C. Harvey, C. J. Myatt, “External-cavity diode laser using a grazing-incidence diffraction grating,” Opt. Lett. 16, 910–912 (1991).
    [CrossRef] [PubMed]

1999 (1)

J. S. Lawrence, D. M. Kane, “Influence of the angular alignment of the optical feedback field on external cavity diode laser characteristics,” Opt. Commun. 159, 316–324 (1999).
[CrossRef]

1998 (1)

I. Linnerud, P. Kaspersen, T. Jaeger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B 67, 297–305 (1998).
[CrossRef]

1995 (1)

1994 (1)

1992 (3)

1991 (2)

K. C. Harvey, C. J. Myatt, “External-cavity diode laser using a grazing-incidence diffraction grating,” Opt. Lett. 16, 910–912 (1991).
[CrossRef] [PubMed]

D. T. Cassidy, D. M. Bruce, B. F. Ventrudo, “Short-external-cavity module for enhanced single-mode tuning of InGaAsP and AlGaAs semiconductor diode lasers,” Rev. Sci. Instrum. 62, 2385–2388 (1991).
[CrossRef]

1990 (1)

1989 (1)

1988 (1)

1987 (1)

M. Kroll, J. A. Mcclintock, O. Ollinger, “Measurement of gaseous oxygen using diode laser spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
[CrossRef]

1986 (1)

T. Gustavsson, H. Martin, “Low-cost high-resolution laser spectrometer system in the near-infrared region using a GaAlAs diode laser,” Rev. Sci. Instrum. 57, 1132–1134 (1986).
[CrossRef]

1983 (1)

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High frequency wavelength modulation spectroscopy with diode lasers,” Opt. Commun. 44, 175–179 (1983).
[CrossRef]

Bjorklund, G. C.

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High frequency wavelength modulation spectroscopy with diode lasers,” Opt. Commun. 44, 175–179 (1983).
[CrossRef]

Bomse, D. S.

Bonnell, L. J.

Bruce, D. M.

D. T. Cassidy, D. M. Bruce, B. F. Ventrudo, “Short-external-cavity module for enhanced single-mode tuning of InGaAsP and AlGaAs semiconductor diode lasers,” Rev. Sci. Instrum. 62, 2385–2388 (1991).
[CrossRef]

D. M. Bruce, D. T. Cassidy, “Detection of oxygen using short external cavity GaAs semiconductor diode lasers,” Appl. Opt. 29, 1327–1332 (1990).
[CrossRef] [PubMed]

Cassidy, D. T.

Chu, F.

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High frequency wavelength modulation spectroscopy with diode lasers,” Opt. Commun. 44, 175–179 (1983).
[CrossRef]

Diddle, R. W.

Gustavsson, T.

T. Gustavsson, H. Martin, “Low-cost high-resolution laser spectrometer system in the near-infrared region using a GaAlAs diode laser,” Rev. Sci. Instrum. 57, 1132–1134 (1986).
[CrossRef]

Harvey, K. C.

Hovde, D. C.

Jaeger, T.

I. Linnerud, P. Kaspersen, T. Jaeger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B 67, 297–305 (1998).
[CrossRef]

Kane, D. M.

J. S. Lawrence, D. M. Kane, “Influence of the angular alignment of the optical feedback field on external cavity diode laser characteristics,” Opt. Commun. 159, 316–324 (1999).
[CrossRef]

Kaspersen, P.

I. Linnerud, P. Kaspersen, T. Jaeger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B 67, 297–305 (1998).
[CrossRef]

Kroll, M.

M. Kroll, J. A. Mcclintock, O. Ollinger, “Measurement of gaseous oxygen using diode laser spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
[CrossRef]

Lawrence, J. S.

J. S. Lawrence, D. M. Kane, “Influence of the angular alignment of the optical feedback field on external cavity diode laser characteristics,” Opt. Commun. 159, 316–324 (1999).
[CrossRef]

Linnerud, I.

I. Linnerud, P. Kaspersen, T. Jaeger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B 67, 297–305 (1998).
[CrossRef]

Martin, H.

T. Gustavsson, H. Martin, “Low-cost high-resolution laser spectrometer system in the near-infrared region using a GaAlAs diode laser,” Rev. Sci. Instrum. 57, 1132–1134 (1986).
[CrossRef]

Mcclintock, J. A.

M. Kroll, J. A. Mcclintock, O. Ollinger, “Measurement of gaseous oxygen using diode laser spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
[CrossRef]

Myatt, C. J.

Nguyen, Q. V.

Oh, D. B.

Ollinger, O.

M. Kroll, J. A. Mcclintock, O. Ollinger, “Measurement of gaseous oxygen using diode laser spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
[CrossRef]

Pokrowsky, P.

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High frequency wavelength modulation spectroscopy with diode lasers,” Opt. Commun. 44, 175–179 (1983).
[CrossRef]

Silver, J. A.

Stanton, A. C.

Ventrudo, B. F.

D. T. Cassidy, D. M. Bruce, B. F. Ventrudo, “Short-external-cavity module for enhanced single-mode tuning of InGaAsP and AlGaAs semiconductor diode lasers,” Rev. Sci. Instrum. 62, 2385–2388 (1991).
[CrossRef]

Zapka, W.

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High frequency wavelength modulation spectroscopy with diode lasers,” Opt. Commun. 44, 175–179 (1983).
[CrossRef]

Appl. Opt. (7)

Appl. Phys. B (1)

I. Linnerud, P. Kaspersen, T. Jaeger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B 67, 297–305 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

M. Kroll, J. A. Mcclintock, O. Ollinger, “Measurement of gaseous oxygen using diode laser spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
[CrossRef]

Opt. Commun. (2)

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High frequency wavelength modulation spectroscopy with diode lasers,” Opt. Commun. 44, 175–179 (1983).
[CrossRef]

J. S. Lawrence, D. M. Kane, “Influence of the angular alignment of the optical feedback field on external cavity diode laser characteristics,” Opt. Commun. 159, 316–324 (1999).
[CrossRef]

Opt. Lett. (2)

Rev. Sci. Instrum. (2)

D. T. Cassidy, D. M. Bruce, B. F. Ventrudo, “Short-external-cavity module for enhanced single-mode tuning of InGaAsP and AlGaAs semiconductor diode lasers,” Rev. Sci. Instrum. 62, 2385–2388 (1991).
[CrossRef]

T. Gustavsson, H. Martin, “Low-cost high-resolution laser spectrometer system in the near-infrared region using a GaAlAs diode laser,” Rev. Sci. Instrum. 57, 1132–1134 (1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of optical and instrumentation setup used to obtain the cesium D 2 line. PD, silicon photodiode; PC, personal computer.

Fig. 2
Fig. 2

Tuning characteristics of a specific diode laser as a function of the modulation frequency (square, experimental data).

Fig. 3
Fig. 3

Direct absorption spectrum of (a) the cesium D 2 line and (b) the absorption modulation spectrum (m = 2.1) of the cesium D 2 line.

Fig. 4
Fig. 4

2f-, 4f-, and 6f-harmonic signals 2(a), 4(a), and 6(a) and the harmonics of the background signals 2(b), 4(b), and 6(b).

Metrics