Abstract

Two-photon-induced polarization spectroscopy of molecular nitrogen in the a 1Πg(ν′ = 1) ← X 1 Σg+ (ν″ = 0) system near 283 nm was performed, and its signal dependence investigated over the pressure range from 1.2 to 5 bars at 300 K. A significant increase of the signal intensity with pressure beyond the expected square law for a two-photon process was observed for pure nitrogen. Similar behavior was also found for a constant nitrogen partial pressure with increasing partial pressures of argon buffer gas. In both cases the spectral linewidth of the excited transitions increased dramatically with overall pressure. A possible explanation is given for the observed behavior in terms of contributions to the nonlinear susceptibility of the medium from the population of one-photon resonantly absorbing excited-state nitrogen and ground state N2+ ions created in the multiphoton absorption process at the high laser intensities required.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, Nonlinear Optics (Academic, San Diego, 1992).
  2. R. P. Lucht, J. T. Salmon, G. B. King, D. W. Sweener, N. M. Laurendeau, “Two-photon excited fluorescence measurement of hydrogen atoms in flames,” Opt. Lett. 8, 365–367 (1983).
    [CrossRef] [PubMed]
  3. J. E. M. Goldsmith, “Flame studies of atomic hydrogen and oxygen using resonant multiphoton optogalvanic spectroscopy,” in Proceedings of the 20th Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 1331–1337.
  4. U. Westblom, S. Agrup, M. Aldén, P. Cederbalk, “Detection of nitrogen atoms in flames using two-photon laser-induced fluorescence and investigations of photochemical effects,” Appl. Opt. 30, 2990–3002 (1991).
    [CrossRef] [PubMed]
  5. U. Westblom, M. Aldén, “Laser-induced fluorescence detection of NH3 with the use of two-photon excitation,” Appl. Spectrosc. 44, 881–886 (1990).
    [CrossRef]
  6. J. J. Tiee, C. R. Quick, G. W. Loge, F. B. Wampler, “2 photon pumped CO B-A laser,” J. Appl. Phys. 63, 288–290 (1988).
    [CrossRef]
  7. K. C. Smyth, P. J. H. Tjossem, “Signal detection efficiency in multiphoton ionization flame measurements,” Appl. Opt. 29, 4891–4898 (1990).
    [CrossRef] [PubMed]
  8. M. Aldén, H. Edner, S. Wallin, “Simultaneous spatially resolved NO and NO2 measurements using one- and two-photon laser-induced fluorescence,” Opt. Lett. 10, 529–531 (1985).
    [CrossRef]
  9. T. Ebata, A. Fujii, M. Ito, “Two-color double resonant multiphoton ionization of N2 and the LIF detection of N2+ ion produced by multiphoton ionization,” J. Phys. Chem. 91, 3125–3128 (1987).
    [CrossRef]
  10. C. F. Kaminski, B. Löfstedt, R. Fritzon, M. Aldén, “Two-photon resonant detection of N2 using polarization spectroscopy and laser induced fluorescence,” in Laser Applications to Chemical, Biological, and Environmental Analysis, Vol. 3 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 158–160.
  11. W. Demtröder, Laser Spectroscopy (Springer-Verlag, Berlin, 1991).
  12. R. E. Teets, F. W. Kowalski, W. T. Hill, N. Charlson, T. W. Hänsch, “Laser polarization spectroscopy,” in Advances in Laser Spectroscopy I, A. H. Zewail, ed., Proc. SPIE113, 80–87 (1977).
    [CrossRef]
  13. C. Wieman, T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
    [CrossRef]
  14. W. E. Ernst, “Doppler-free polarization spectroscopy of diatomic molecules in flame reactions,” Opt. Commun. 44, 159–164 (1983).
    [CrossRef]
  15. K. Nyholm, R. Maier, C. G. Aminoff, M. Kaivola, “Detection of OH in flames by using polarization spectroscopy,” Appl. Opt. 32, 919–924 (1993).
    [CrossRef] [PubMed]
  16. B. Löfstedt, R. Fritzon, M. Aldén, “Investigation of NO detection in flames by use of polarization spectroscopy,” Appl. Opt. 35, 2140–2146 (1996).
    [CrossRef] [PubMed]
  17. K. Nyholm, “Measurements of OH rotational temperatures in flames by using polarization spectroscopy,” Opt. Commun. 111, 66–70 (1994).
    [CrossRef]
  18. K. Nyholm, R. Fritzon, M. Aldén, “Two-dimensional imaging of OH in flames by use of polarization spectroscopy,” Opt. Lett. 18, 1672–1674 (1993).
    [CrossRef] [PubMed]
  19. T. A. Reichardt, R. P. Lucht, “Theoretical calculation of line shapes and saturation effects in polarization spectroscopy,” J. Chem. Phys. 109, 5830–5843 (1998).
    [CrossRef]
  20. K. Danzmann, K. Grützmacher, B. Wende, “Doppler-free two-photon polarization-spectroscopic measurement of the Stark-broadened profile of the hydrogen Lα line in a dense plasma,” Phys. Rev. Lett. 57, 2151–2153 (1986).
    [CrossRef] [PubMed]
  21. J. Seidel, “Theory of two-photon polarization spectroscopy of plasma-broadened hydrogen Lα line,” Phys. Rev. Lett. 57, 2154–2156 (1986).
    [CrossRef] [PubMed]
  22. A. Lofthus, P. Krupenie, “The spectrum of molecular nitrogen,” J. Phys. Chem. Ref. Data 6, 113–307 (1977).
    [CrossRef]
  23. N. van Veen, P. Brewer, P. Das, R. Bersohn, “Detection of the 1Πg(ν′ = 0,1) ← X1Πg(ν″ = 0) transition in N2by laser-induced fluorescence,” J. Chem. Phys. 77, 4326–4329 (1982).
    [CrossRef]
  24. C. F. Kaminski, B. Löfstedt, Fritzon, M. Aldén, “Two-photon polarization spectroscopy and (2 + 3)-photon laser-induced fluorescence of N2,” Opt. Commun. 129, 38–43 (1996).
  25. G. N. Robertson, K. Kohse-Höhinghaus, S. Le Boiteux, F. Aguerre, B. Attal-Trétout, “Observation of strong field effects and rotational line coupling in DFWM processes resonant with 2Σ–2Π electronic system,” J. Quant. Spectrosc. Radiat. Transfer 55, 71–101 (1996).
    [CrossRef]
  26. A. C. Eckbreth, Laser Diagnostics for Combustion, Temperature and Species (Abacus Press, Cambridge, Mass., 1988).
  27. L. A. Rahn, L. J. Zych, P. Mattern, “Background-free CARS studies of carbon monoxide in a flame,” Opt. Commun. 30, 249–252 (1979).
    [CrossRef]
  28. Y. R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984).
  29. D. R. Crosley, G. P. Smith, “Two-photon spectroscopy of the A2Σ+–X2Πi system of OH,” J. Chem. Phys. 79, 4764–4773 (1983).
    [CrossRef]
  30. P. J. H. Tjossem, K. C. Smyth, “Multiphoton excitation spectroscopy of the B1Σ+ and C1Σ+ Rydberg states of CO,” J. Chem. Phys. 91, 2041–2048 (1989).
    [CrossRef]
  31. D. C. Hanna, M. A. Yuratich, D. Cotter, Nonlinear Optics of Free Atoms and Molecules (Springer-Verlag, Heidelberg, 1979).
    [CrossRef]
  32. S. M. Gladkov, N. I. Koroteev, M. V. Rychev, O. Shtentsel, “Nature of the anomalously strong cubic optical nonlinearity of a gaseous plasma,” JETP Lett. 43, 287–291 (1986).
  33. Y. Prior, A. R. Bogdan, M. Dagenais, N. Bloembergen, “Pressure-induced extra resonances in four-wave mixing,” Phys. Rev. Lett. 46, 111–114 (1981).
    [CrossRef]
  34. W. R. Garret, Y. Zhu, “Coherent control of multiphoton driven processes: a laser-induced catalyst,” J. Chem. Phys. 106, 2045–2048 (1997).
    [CrossRef]
  35. W. G. Mallard, J. H. Miller, K. C. Smyth, “Resonantly enhanced two-photon photoionization of NO in an atmospheric flame,” J. Chem. Phys. 76, 3483–3492 (1982).
    [CrossRef]

1998

T. A. Reichardt, R. P. Lucht, “Theoretical calculation of line shapes and saturation effects in polarization spectroscopy,” J. Chem. Phys. 109, 5830–5843 (1998).
[CrossRef]

1997

W. R. Garret, Y. Zhu, “Coherent control of multiphoton driven processes: a laser-induced catalyst,” J. Chem. Phys. 106, 2045–2048 (1997).
[CrossRef]

1996

C. F. Kaminski, B. Löfstedt, Fritzon, M. Aldén, “Two-photon polarization spectroscopy and (2 + 3)-photon laser-induced fluorescence of N2,” Opt. Commun. 129, 38–43 (1996).

G. N. Robertson, K. Kohse-Höhinghaus, S. Le Boiteux, F. Aguerre, B. Attal-Trétout, “Observation of strong field effects and rotational line coupling in DFWM processes resonant with 2Σ–2Π electronic system,” J. Quant. Spectrosc. Radiat. Transfer 55, 71–101 (1996).
[CrossRef]

B. Löfstedt, R. Fritzon, M. Aldén, “Investigation of NO detection in flames by use of polarization spectroscopy,” Appl. Opt. 35, 2140–2146 (1996).
[CrossRef] [PubMed]

1994

K. Nyholm, “Measurements of OH rotational temperatures in flames by using polarization spectroscopy,” Opt. Commun. 111, 66–70 (1994).
[CrossRef]

1993

1991

1990

1989

P. J. H. Tjossem, K. C. Smyth, “Multiphoton excitation spectroscopy of the B1Σ+ and C1Σ+ Rydberg states of CO,” J. Chem. Phys. 91, 2041–2048 (1989).
[CrossRef]

1988

J. J. Tiee, C. R. Quick, G. W. Loge, F. B. Wampler, “2 photon pumped CO B-A laser,” J. Appl. Phys. 63, 288–290 (1988).
[CrossRef]

1987

T. Ebata, A. Fujii, M. Ito, “Two-color double resonant multiphoton ionization of N2 and the LIF detection of N2+ ion produced by multiphoton ionization,” J. Phys. Chem. 91, 3125–3128 (1987).
[CrossRef]

1986

K. Danzmann, K. Grützmacher, B. Wende, “Doppler-free two-photon polarization-spectroscopic measurement of the Stark-broadened profile of the hydrogen Lα line in a dense plasma,” Phys. Rev. Lett. 57, 2151–2153 (1986).
[CrossRef] [PubMed]

J. Seidel, “Theory of two-photon polarization spectroscopy of plasma-broadened hydrogen Lα line,” Phys. Rev. Lett. 57, 2154–2156 (1986).
[CrossRef] [PubMed]

S. M. Gladkov, N. I. Koroteev, M. V. Rychev, O. Shtentsel, “Nature of the anomalously strong cubic optical nonlinearity of a gaseous plasma,” JETP Lett. 43, 287–291 (1986).

1985

1983

D. R. Crosley, G. P. Smith, “Two-photon spectroscopy of the A2Σ+–X2Πi system of OH,” J. Chem. Phys. 79, 4764–4773 (1983).
[CrossRef]

R. P. Lucht, J. T. Salmon, G. B. King, D. W. Sweener, N. M. Laurendeau, “Two-photon excited fluorescence measurement of hydrogen atoms in flames,” Opt. Lett. 8, 365–367 (1983).
[CrossRef] [PubMed]

W. E. Ernst, “Doppler-free polarization spectroscopy of diatomic molecules in flame reactions,” Opt. Commun. 44, 159–164 (1983).
[CrossRef]

1982

N. van Veen, P. Brewer, P. Das, R. Bersohn, “Detection of the 1Πg(ν′ = 0,1) ← X1Πg(ν″ = 0) transition in N2by laser-induced fluorescence,” J. Chem. Phys. 77, 4326–4329 (1982).
[CrossRef]

W. G. Mallard, J. H. Miller, K. C. Smyth, “Resonantly enhanced two-photon photoionization of NO in an atmospheric flame,” J. Chem. Phys. 76, 3483–3492 (1982).
[CrossRef]

1981

Y. Prior, A. R. Bogdan, M. Dagenais, N. Bloembergen, “Pressure-induced extra resonances in four-wave mixing,” Phys. Rev. Lett. 46, 111–114 (1981).
[CrossRef]

1979

L. A. Rahn, L. J. Zych, P. Mattern, “Background-free CARS studies of carbon monoxide in a flame,” Opt. Commun. 30, 249–252 (1979).
[CrossRef]

1977

A. Lofthus, P. Krupenie, “The spectrum of molecular nitrogen,” J. Phys. Chem. Ref. Data 6, 113–307 (1977).
[CrossRef]

1976

C. Wieman, T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
[CrossRef]

Agrup, S.

Aguerre, F.

G. N. Robertson, K. Kohse-Höhinghaus, S. Le Boiteux, F. Aguerre, B. Attal-Trétout, “Observation of strong field effects and rotational line coupling in DFWM processes resonant with 2Σ–2Π electronic system,” J. Quant. Spectrosc. Radiat. Transfer 55, 71–101 (1996).
[CrossRef]

Aldén, M.

Aminoff, C. G.

Attal-Trétout, B.

G. N. Robertson, K. Kohse-Höhinghaus, S. Le Boiteux, F. Aguerre, B. Attal-Trétout, “Observation of strong field effects and rotational line coupling in DFWM processes resonant with 2Σ–2Π electronic system,” J. Quant. Spectrosc. Radiat. Transfer 55, 71–101 (1996).
[CrossRef]

Bersohn, R.

N. van Veen, P. Brewer, P. Das, R. Bersohn, “Detection of the 1Πg(ν′ = 0,1) ← X1Πg(ν″ = 0) transition in N2by laser-induced fluorescence,” J. Chem. Phys. 77, 4326–4329 (1982).
[CrossRef]

Bloembergen, N.

Y. Prior, A. R. Bogdan, M. Dagenais, N. Bloembergen, “Pressure-induced extra resonances in four-wave mixing,” Phys. Rev. Lett. 46, 111–114 (1981).
[CrossRef]

Bogdan, A. R.

Y. Prior, A. R. Bogdan, M. Dagenais, N. Bloembergen, “Pressure-induced extra resonances in four-wave mixing,” Phys. Rev. Lett. 46, 111–114 (1981).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, San Diego, 1992).

Brewer, P.

N. van Veen, P. Brewer, P. Das, R. Bersohn, “Detection of the 1Πg(ν′ = 0,1) ← X1Πg(ν″ = 0) transition in N2by laser-induced fluorescence,” J. Chem. Phys. 77, 4326–4329 (1982).
[CrossRef]

Cederbalk, P.

Charlson, N.

R. E. Teets, F. W. Kowalski, W. T. Hill, N. Charlson, T. W. Hänsch, “Laser polarization spectroscopy,” in Advances in Laser Spectroscopy I, A. H. Zewail, ed., Proc. SPIE113, 80–87 (1977).
[CrossRef]

Cotter, D.

D. C. Hanna, M. A. Yuratich, D. Cotter, Nonlinear Optics of Free Atoms and Molecules (Springer-Verlag, Heidelberg, 1979).
[CrossRef]

Crosley, D. R.

D. R. Crosley, G. P. Smith, “Two-photon spectroscopy of the A2Σ+–X2Πi system of OH,” J. Chem. Phys. 79, 4764–4773 (1983).
[CrossRef]

Dagenais, M.

Y. Prior, A. R. Bogdan, M. Dagenais, N. Bloembergen, “Pressure-induced extra resonances in four-wave mixing,” Phys. Rev. Lett. 46, 111–114 (1981).
[CrossRef]

Danzmann, K.

K. Danzmann, K. Grützmacher, B. Wende, “Doppler-free two-photon polarization-spectroscopic measurement of the Stark-broadened profile of the hydrogen Lα line in a dense plasma,” Phys. Rev. Lett. 57, 2151–2153 (1986).
[CrossRef] [PubMed]

Das, P.

N. van Veen, P. Brewer, P. Das, R. Bersohn, “Detection of the 1Πg(ν′ = 0,1) ← X1Πg(ν″ = 0) transition in N2by laser-induced fluorescence,” J. Chem. Phys. 77, 4326–4329 (1982).
[CrossRef]

Demtröder, W.

W. Demtröder, Laser Spectroscopy (Springer-Verlag, Berlin, 1991).

Ebata, T.

T. Ebata, A. Fujii, M. Ito, “Two-color double resonant multiphoton ionization of N2 and the LIF detection of N2+ ion produced by multiphoton ionization,” J. Phys. Chem. 91, 3125–3128 (1987).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion, Temperature and Species (Abacus Press, Cambridge, Mass., 1988).

Edner, H.

Ernst, W. E.

W. E. Ernst, “Doppler-free polarization spectroscopy of diatomic molecules in flame reactions,” Opt. Commun. 44, 159–164 (1983).
[CrossRef]

Fritzon,

C. F. Kaminski, B. Löfstedt, Fritzon, M. Aldén, “Two-photon polarization spectroscopy and (2 + 3)-photon laser-induced fluorescence of N2,” Opt. Commun. 129, 38–43 (1996).

Fritzon, R.

B. Löfstedt, R. Fritzon, M. Aldén, “Investigation of NO detection in flames by use of polarization spectroscopy,” Appl. Opt. 35, 2140–2146 (1996).
[CrossRef] [PubMed]

K. Nyholm, R. Fritzon, M. Aldén, “Two-dimensional imaging of OH in flames by use of polarization spectroscopy,” Opt. Lett. 18, 1672–1674 (1993).
[CrossRef] [PubMed]

C. F. Kaminski, B. Löfstedt, R. Fritzon, M. Aldén, “Two-photon resonant detection of N2 using polarization spectroscopy and laser induced fluorescence,” in Laser Applications to Chemical, Biological, and Environmental Analysis, Vol. 3 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 158–160.

Fujii, A.

T. Ebata, A. Fujii, M. Ito, “Two-color double resonant multiphoton ionization of N2 and the LIF detection of N2+ ion produced by multiphoton ionization,” J. Phys. Chem. 91, 3125–3128 (1987).
[CrossRef]

Garret, W. R.

W. R. Garret, Y. Zhu, “Coherent control of multiphoton driven processes: a laser-induced catalyst,” J. Chem. Phys. 106, 2045–2048 (1997).
[CrossRef]

Gladkov, S. M.

S. M. Gladkov, N. I. Koroteev, M. V. Rychev, O. Shtentsel, “Nature of the anomalously strong cubic optical nonlinearity of a gaseous plasma,” JETP Lett. 43, 287–291 (1986).

Goldsmith, J. E. M.

J. E. M. Goldsmith, “Flame studies of atomic hydrogen and oxygen using resonant multiphoton optogalvanic spectroscopy,” in Proceedings of the 20th Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 1331–1337.

Grützmacher, K.

K. Danzmann, K. Grützmacher, B. Wende, “Doppler-free two-photon polarization-spectroscopic measurement of the Stark-broadened profile of the hydrogen Lα line in a dense plasma,” Phys. Rev. Lett. 57, 2151–2153 (1986).
[CrossRef] [PubMed]

Hanna, D. C.

D. C. Hanna, M. A. Yuratich, D. Cotter, Nonlinear Optics of Free Atoms and Molecules (Springer-Verlag, Heidelberg, 1979).
[CrossRef]

Hänsch, T. W.

C. Wieman, T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
[CrossRef]

R. E. Teets, F. W. Kowalski, W. T. Hill, N. Charlson, T. W. Hänsch, “Laser polarization spectroscopy,” in Advances in Laser Spectroscopy I, A. H. Zewail, ed., Proc. SPIE113, 80–87 (1977).
[CrossRef]

Hill, W. T.

R. E. Teets, F. W. Kowalski, W. T. Hill, N. Charlson, T. W. Hänsch, “Laser polarization spectroscopy,” in Advances in Laser Spectroscopy I, A. H. Zewail, ed., Proc. SPIE113, 80–87 (1977).
[CrossRef]

Ito, M.

T. Ebata, A. Fujii, M. Ito, “Two-color double resonant multiphoton ionization of N2 and the LIF detection of N2+ ion produced by multiphoton ionization,” J. Phys. Chem. 91, 3125–3128 (1987).
[CrossRef]

Kaivola, M.

Kaminski, C. F.

C. F. Kaminski, B. Löfstedt, Fritzon, M. Aldén, “Two-photon polarization spectroscopy and (2 + 3)-photon laser-induced fluorescence of N2,” Opt. Commun. 129, 38–43 (1996).

C. F. Kaminski, B. Löfstedt, R. Fritzon, M. Aldén, “Two-photon resonant detection of N2 using polarization spectroscopy and laser induced fluorescence,” in Laser Applications to Chemical, Biological, and Environmental Analysis, Vol. 3 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 158–160.

King, G. B.

Kohse-Höhinghaus, K.

G. N. Robertson, K. Kohse-Höhinghaus, S. Le Boiteux, F. Aguerre, B. Attal-Trétout, “Observation of strong field effects and rotational line coupling in DFWM processes resonant with 2Σ–2Π electronic system,” J. Quant. Spectrosc. Radiat. Transfer 55, 71–101 (1996).
[CrossRef]

Koroteev, N. I.

S. M. Gladkov, N. I. Koroteev, M. V. Rychev, O. Shtentsel, “Nature of the anomalously strong cubic optical nonlinearity of a gaseous plasma,” JETP Lett. 43, 287–291 (1986).

Kowalski, F. W.

R. E. Teets, F. W. Kowalski, W. T. Hill, N. Charlson, T. W. Hänsch, “Laser polarization spectroscopy,” in Advances in Laser Spectroscopy I, A. H. Zewail, ed., Proc. SPIE113, 80–87 (1977).
[CrossRef]

Krupenie, P.

A. Lofthus, P. Krupenie, “The spectrum of molecular nitrogen,” J. Phys. Chem. Ref. Data 6, 113–307 (1977).
[CrossRef]

Laurendeau, N. M.

Le Boiteux, S.

G. N. Robertson, K. Kohse-Höhinghaus, S. Le Boiteux, F. Aguerre, B. Attal-Trétout, “Observation of strong field effects and rotational line coupling in DFWM processes resonant with 2Σ–2Π electronic system,” J. Quant. Spectrosc. Radiat. Transfer 55, 71–101 (1996).
[CrossRef]

Löfstedt, B.

B. Löfstedt, R. Fritzon, M. Aldén, “Investigation of NO detection in flames by use of polarization spectroscopy,” Appl. Opt. 35, 2140–2146 (1996).
[CrossRef] [PubMed]

C. F. Kaminski, B. Löfstedt, Fritzon, M. Aldén, “Two-photon polarization spectroscopy and (2 + 3)-photon laser-induced fluorescence of N2,” Opt. Commun. 129, 38–43 (1996).

C. F. Kaminski, B. Löfstedt, R. Fritzon, M. Aldén, “Two-photon resonant detection of N2 using polarization spectroscopy and laser induced fluorescence,” in Laser Applications to Chemical, Biological, and Environmental Analysis, Vol. 3 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 158–160.

Lofthus, A.

A. Lofthus, P. Krupenie, “The spectrum of molecular nitrogen,” J. Phys. Chem. Ref. Data 6, 113–307 (1977).
[CrossRef]

Loge, G. W.

J. J. Tiee, C. R. Quick, G. W. Loge, F. B. Wampler, “2 photon pumped CO B-A laser,” J. Appl. Phys. 63, 288–290 (1988).
[CrossRef]

Lucht, R. P.

T. A. Reichardt, R. P. Lucht, “Theoretical calculation of line shapes and saturation effects in polarization spectroscopy,” J. Chem. Phys. 109, 5830–5843 (1998).
[CrossRef]

R. P. Lucht, J. T. Salmon, G. B. King, D. W. Sweener, N. M. Laurendeau, “Two-photon excited fluorescence measurement of hydrogen atoms in flames,” Opt. Lett. 8, 365–367 (1983).
[CrossRef] [PubMed]

Maier, R.

Mallard, W. G.

W. G. Mallard, J. H. Miller, K. C. Smyth, “Resonantly enhanced two-photon photoionization of NO in an atmospheric flame,” J. Chem. Phys. 76, 3483–3492 (1982).
[CrossRef]

Mattern, P.

L. A. Rahn, L. J. Zych, P. Mattern, “Background-free CARS studies of carbon monoxide in a flame,” Opt. Commun. 30, 249–252 (1979).
[CrossRef]

Miller, J. H.

W. G. Mallard, J. H. Miller, K. C. Smyth, “Resonantly enhanced two-photon photoionization of NO in an atmospheric flame,” J. Chem. Phys. 76, 3483–3492 (1982).
[CrossRef]

Nyholm, K.

Prior, Y.

Y. Prior, A. R. Bogdan, M. Dagenais, N. Bloembergen, “Pressure-induced extra resonances in four-wave mixing,” Phys. Rev. Lett. 46, 111–114 (1981).
[CrossRef]

Quick, C. R.

J. J. Tiee, C. R. Quick, G. W. Loge, F. B. Wampler, “2 photon pumped CO B-A laser,” J. Appl. Phys. 63, 288–290 (1988).
[CrossRef]

Rahn, L. A.

L. A. Rahn, L. J. Zych, P. Mattern, “Background-free CARS studies of carbon monoxide in a flame,” Opt. Commun. 30, 249–252 (1979).
[CrossRef]

Reichardt, T. A.

T. A. Reichardt, R. P. Lucht, “Theoretical calculation of line shapes and saturation effects in polarization spectroscopy,” J. Chem. Phys. 109, 5830–5843 (1998).
[CrossRef]

Robertson, G. N.

G. N. Robertson, K. Kohse-Höhinghaus, S. Le Boiteux, F. Aguerre, B. Attal-Trétout, “Observation of strong field effects and rotational line coupling in DFWM processes resonant with 2Σ–2Π electronic system,” J. Quant. Spectrosc. Radiat. Transfer 55, 71–101 (1996).
[CrossRef]

Rychev, M. V.

S. M. Gladkov, N. I. Koroteev, M. V. Rychev, O. Shtentsel, “Nature of the anomalously strong cubic optical nonlinearity of a gaseous plasma,” JETP Lett. 43, 287–291 (1986).

Salmon, J. T.

Seidel, J.

J. Seidel, “Theory of two-photon polarization spectroscopy of plasma-broadened hydrogen Lα line,” Phys. Rev. Lett. 57, 2154–2156 (1986).
[CrossRef] [PubMed]

Shen, Y. R.

Y. R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984).

Shtentsel, O.

S. M. Gladkov, N. I. Koroteev, M. V. Rychev, O. Shtentsel, “Nature of the anomalously strong cubic optical nonlinearity of a gaseous plasma,” JETP Lett. 43, 287–291 (1986).

Smith, G. P.

D. R. Crosley, G. P. Smith, “Two-photon spectroscopy of the A2Σ+–X2Πi system of OH,” J. Chem. Phys. 79, 4764–4773 (1983).
[CrossRef]

Smyth, K. C.

K. C. Smyth, P. J. H. Tjossem, “Signal detection efficiency in multiphoton ionization flame measurements,” Appl. Opt. 29, 4891–4898 (1990).
[CrossRef] [PubMed]

P. J. H. Tjossem, K. C. Smyth, “Multiphoton excitation spectroscopy of the B1Σ+ and C1Σ+ Rydberg states of CO,” J. Chem. Phys. 91, 2041–2048 (1989).
[CrossRef]

W. G. Mallard, J. H. Miller, K. C. Smyth, “Resonantly enhanced two-photon photoionization of NO in an atmospheric flame,” J. Chem. Phys. 76, 3483–3492 (1982).
[CrossRef]

Sweener, D. W.

Teets, R. E.

R. E. Teets, F. W. Kowalski, W. T. Hill, N. Charlson, T. W. Hänsch, “Laser polarization spectroscopy,” in Advances in Laser Spectroscopy I, A. H. Zewail, ed., Proc. SPIE113, 80–87 (1977).
[CrossRef]

Tiee, J. J.

J. J. Tiee, C. R. Quick, G. W. Loge, F. B. Wampler, “2 photon pumped CO B-A laser,” J. Appl. Phys. 63, 288–290 (1988).
[CrossRef]

Tjossem, P. J. H.

K. C. Smyth, P. J. H. Tjossem, “Signal detection efficiency in multiphoton ionization flame measurements,” Appl. Opt. 29, 4891–4898 (1990).
[CrossRef] [PubMed]

P. J. H. Tjossem, K. C. Smyth, “Multiphoton excitation spectroscopy of the B1Σ+ and C1Σ+ Rydberg states of CO,” J. Chem. Phys. 91, 2041–2048 (1989).
[CrossRef]

van Veen, N.

N. van Veen, P. Brewer, P. Das, R. Bersohn, “Detection of the 1Πg(ν′ = 0,1) ← X1Πg(ν″ = 0) transition in N2by laser-induced fluorescence,” J. Chem. Phys. 77, 4326–4329 (1982).
[CrossRef]

Wallin, S.

Wampler, F. B.

J. J. Tiee, C. R. Quick, G. W. Loge, F. B. Wampler, “2 photon pumped CO B-A laser,” J. Appl. Phys. 63, 288–290 (1988).
[CrossRef]

Wende, B.

K. Danzmann, K. Grützmacher, B. Wende, “Doppler-free two-photon polarization-spectroscopic measurement of the Stark-broadened profile of the hydrogen Lα line in a dense plasma,” Phys. Rev. Lett. 57, 2151–2153 (1986).
[CrossRef] [PubMed]

Westblom, U.

Wieman, C.

C. Wieman, T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
[CrossRef]

Yuratich, M. A.

D. C. Hanna, M. A. Yuratich, D. Cotter, Nonlinear Optics of Free Atoms and Molecules (Springer-Verlag, Heidelberg, 1979).
[CrossRef]

Zhu, Y.

W. R. Garret, Y. Zhu, “Coherent control of multiphoton driven processes: a laser-induced catalyst,” J. Chem. Phys. 106, 2045–2048 (1997).
[CrossRef]

Zych, L. J.

L. A. Rahn, L. J. Zych, P. Mattern, “Background-free CARS studies of carbon monoxide in a flame,” Opt. Commun. 30, 249–252 (1979).
[CrossRef]

Appl. Opt.

Appl. Spectrosc.

J. Appl. Phys.

J. J. Tiee, C. R. Quick, G. W. Loge, F. B. Wampler, “2 photon pumped CO B-A laser,” J. Appl. Phys. 63, 288–290 (1988).
[CrossRef]

J. Chem. Phys.

T. A. Reichardt, R. P. Lucht, “Theoretical calculation of line shapes and saturation effects in polarization spectroscopy,” J. Chem. Phys. 109, 5830–5843 (1998).
[CrossRef]

N. van Veen, P. Brewer, P. Das, R. Bersohn, “Detection of the 1Πg(ν′ = 0,1) ← X1Πg(ν″ = 0) transition in N2by laser-induced fluorescence,” J. Chem. Phys. 77, 4326–4329 (1982).
[CrossRef]

D. R. Crosley, G. P. Smith, “Two-photon spectroscopy of the A2Σ+–X2Πi system of OH,” J. Chem. Phys. 79, 4764–4773 (1983).
[CrossRef]

P. J. H. Tjossem, K. C. Smyth, “Multiphoton excitation spectroscopy of the B1Σ+ and C1Σ+ Rydberg states of CO,” J. Chem. Phys. 91, 2041–2048 (1989).
[CrossRef]

W. R. Garret, Y. Zhu, “Coherent control of multiphoton driven processes: a laser-induced catalyst,” J. Chem. Phys. 106, 2045–2048 (1997).
[CrossRef]

W. G. Mallard, J. H. Miller, K. C. Smyth, “Resonantly enhanced two-photon photoionization of NO in an atmospheric flame,” J. Chem. Phys. 76, 3483–3492 (1982).
[CrossRef]

J. Phys. Chem.

T. Ebata, A. Fujii, M. Ito, “Two-color double resonant multiphoton ionization of N2 and the LIF detection of N2+ ion produced by multiphoton ionization,” J. Phys. Chem. 91, 3125–3128 (1987).
[CrossRef]

J. Phys. Chem. Ref. Data

A. Lofthus, P. Krupenie, “The spectrum of molecular nitrogen,” J. Phys. Chem. Ref. Data 6, 113–307 (1977).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

G. N. Robertson, K. Kohse-Höhinghaus, S. Le Boiteux, F. Aguerre, B. Attal-Trétout, “Observation of strong field effects and rotational line coupling in DFWM processes resonant with 2Σ–2Π electronic system,” J. Quant. Spectrosc. Radiat. Transfer 55, 71–101 (1996).
[CrossRef]

JETP Lett.

S. M. Gladkov, N. I. Koroteev, M. V. Rychev, O. Shtentsel, “Nature of the anomalously strong cubic optical nonlinearity of a gaseous plasma,” JETP Lett. 43, 287–291 (1986).

Opt. Commun.

L. A. Rahn, L. J. Zych, P. Mattern, “Background-free CARS studies of carbon monoxide in a flame,” Opt. Commun. 30, 249–252 (1979).
[CrossRef]

C. F. Kaminski, B. Löfstedt, Fritzon, M. Aldén, “Two-photon polarization spectroscopy and (2 + 3)-photon laser-induced fluorescence of N2,” Opt. Commun. 129, 38–43 (1996).

K. Nyholm, “Measurements of OH rotational temperatures in flames by using polarization spectroscopy,” Opt. Commun. 111, 66–70 (1994).
[CrossRef]

W. E. Ernst, “Doppler-free polarization spectroscopy of diatomic molecules in flame reactions,” Opt. Commun. 44, 159–164 (1983).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

Y. Prior, A. R. Bogdan, M. Dagenais, N. Bloembergen, “Pressure-induced extra resonances in four-wave mixing,” Phys. Rev. Lett. 46, 111–114 (1981).
[CrossRef]

C. Wieman, T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
[CrossRef]

K. Danzmann, K. Grützmacher, B. Wende, “Doppler-free two-photon polarization-spectroscopic measurement of the Stark-broadened profile of the hydrogen Lα line in a dense plasma,” Phys. Rev. Lett. 57, 2151–2153 (1986).
[CrossRef] [PubMed]

J. Seidel, “Theory of two-photon polarization spectroscopy of plasma-broadened hydrogen Lα line,” Phys. Rev. Lett. 57, 2154–2156 (1986).
[CrossRef] [PubMed]

Other

A. C. Eckbreth, Laser Diagnostics for Combustion, Temperature and Species (Abacus Press, Cambridge, Mass., 1988).

R. W. Boyd, Nonlinear Optics (Academic, San Diego, 1992).

J. E. M. Goldsmith, “Flame studies of atomic hydrogen and oxygen using resonant multiphoton optogalvanic spectroscopy,” in Proceedings of the 20th Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 1331–1337.

C. F. Kaminski, B. Löfstedt, R. Fritzon, M. Aldén, “Two-photon resonant detection of N2 using polarization spectroscopy and laser induced fluorescence,” in Laser Applications to Chemical, Biological, and Environmental Analysis, Vol. 3 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 158–160.

W. Demtröder, Laser Spectroscopy (Springer-Verlag, Berlin, 1991).

R. E. Teets, F. W. Kowalski, W. T. Hill, N. Charlson, T. W. Hänsch, “Laser polarization spectroscopy,” in Advances in Laser Spectroscopy I, A. H. Zewail, ed., Proc. SPIE113, 80–87 (1977).
[CrossRef]

Y. R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984).

D. C. Hanna, M. A. Yuratich, D. Cotter, Nonlinear Optics of Free Atoms and Molecules (Springer-Verlag, Heidelberg, 1979).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic drawing of the high-pressure stainless-steel gas cell used for the TIPS experiments. The polarization optics in the probe beam path are mounted within the cell to minimize depolarization effects that are due to window birefringence. The relative angle of the analyzer with respect to the probe beam polarizer could be precisely adjusted from outside the cell.

Fig. 2
Fig. 2

TIPS S-branch bandhead in the nitrogen a 1Π g (ν′ = 1) ← X 1Σ g (ν″ = 0) electronic system at a total pressure of 3.01 bars. The spectrum was normalized by the averaged laser intensity profile over the scan range. The thin solid line is unprocessed raw data, indicating the enormous signal fluctuations encountered in such a high-order process. The thick solid curve is a Fourier-transformed, low-pass-filtered version of the data. Positions and rotational quantum numbers of the S-branch transitions are indicated in the upper part of the figure.

Fig. 3
Fig. 3

Pressure dependence of the TIPS signal intensity from the pure nitrogen samples. The data points correspond to the spectrally smoothed integrated TIPS line shapes (see text) of the S(4) and S(11) transitions. The best-fit linear regression gives a power dependence of 2.6 ± 0.2.

Fig. 4
Fig. 4

TIPS S-branch bandhead scans (same conditions as in Fig. 2) in the nitrogen–argon mixtures at four different total pressures and a constant nitrogen partial pressure of 1.2 bars: small filled circles, 5-bars Ar only; diamonds, 1.2-bars N2; triangles, 1.2-bars N2 + 1-bar Ar; filled squares, 1.2-bars N2 + 2-bars Ar; large filled circles, 1.2-bars N2 + 3-bars Ar.

Fig. 5
Fig. 5

Pressure dependence of the integrated TIPS signal intensity from the nitrogen–argon mixtures as a function of total pressure (the nitrogen partial pressure was 1.22 bars). Details are the same as in the Fig. 3 caption. The best-fit linear regression gives a pressure dependence of 1.1 ± 0.2.

Metrics