Abstract

An all-optical reconfigurable neuron based on a photoelectret–electro-optic medium with a sandwich-type structure is presented. Both the inputs and the output of the neuron and the reconfiguration of the weights of the inputs are optical. The structure presented is very versatile and exhibits low energy consumption, as the numerical estimates indicate. The number of inputs can be varied (to an upper limit that is determined by the diffraction effect) without changing the structure of the optical neuron; the same is true for the neurons’ weights.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Collings, S. G. Latham, R. C. Chittick, W. A. Crossland, “Reconfigurable optical interconnect using an optically addressed light valve,” Int. J. Opt. Comput. 1, 31–41 (1990).
  2. R. Buczynski, R. Ortega, T. Szoplik, R. Vounckx, P. Heremans, I. Veretennicoff, H. Thienpont, “Fast optical thresholding with an array of optical thyristor differential pairs,” J. Opt. A Pure Appl. Opt. 1, 276–279 (1999).
    [CrossRef]
  3. W. A. Crossland, P. A. Kirkby, J. W. Parker, R. J. Westmore, “Some applications of optical networks in the architecture of electronic computers,” Opt. Comput. Process. 1, 199–209 (1991).
  4. M. N. Armenise, F. Impagnatiello, V. M. N. Passaro, “Design and simulation of a GaAs acousto-optic correlator for real-time processing,” Opt. Comput. Process. 2, 79–95 (1992).
  5. Y. B. Karasik, “The optical algorithm for the inverse Hough transform,” Opt. Comput. Process. 2, 127–137 (1992).
  6. W. Weber, S. J. Prange, R. Thewes, E. Wohlrab, A. Luck, “On the application of the neuron MOS transistor principle for modern VLSI design,” IEEE Trans. Electron. Devices 43, 1700–1708 (1996).
    [CrossRef]
  7. A. A. Yamamura, M. A. Neifeld, S. Kobayashi, D. Psaltis, “Optical-disk based artificial neural systems,” Opt. Comput. Process. 1, 3–13 (1991).
  8. G. Moagăr-Poladian, “MOS transistor with a photoelectric controlled gate,” Int. J. Optoelectron. 12, 1–7 (1998).
  9. V. M. Fridkin, Photoferroelectrics (Springer-Verlag, Berlin, 1979).
    [CrossRef]
  10. V. M. Fridkin, The Physics of the Electrophotographic Process, 1st ed. (Focal, London, 1973).
  11. J. Mort, D. M. Pai, Photoconductivity and Related Phenomena (Elsevier, New York, 1976).
  12. A. N. Gubkin, Electreţi (Editura Tehnică, Bucureşti, Romania, 1963), translated from the Russian.

1999 (1)

R. Buczynski, R. Ortega, T. Szoplik, R. Vounckx, P. Heremans, I. Veretennicoff, H. Thienpont, “Fast optical thresholding with an array of optical thyristor differential pairs,” J. Opt. A Pure Appl. Opt. 1, 276–279 (1999).
[CrossRef]

1998 (1)

G. Moagăr-Poladian, “MOS transistor with a photoelectric controlled gate,” Int. J. Optoelectron. 12, 1–7 (1998).

1996 (1)

W. Weber, S. J. Prange, R. Thewes, E. Wohlrab, A. Luck, “On the application of the neuron MOS transistor principle for modern VLSI design,” IEEE Trans. Electron. Devices 43, 1700–1708 (1996).
[CrossRef]

1992 (2)

M. N. Armenise, F. Impagnatiello, V. M. N. Passaro, “Design and simulation of a GaAs acousto-optic correlator for real-time processing,” Opt. Comput. Process. 2, 79–95 (1992).

Y. B. Karasik, “The optical algorithm for the inverse Hough transform,” Opt. Comput. Process. 2, 127–137 (1992).

1991 (2)

W. A. Crossland, P. A. Kirkby, J. W. Parker, R. J. Westmore, “Some applications of optical networks in the architecture of electronic computers,” Opt. Comput. Process. 1, 199–209 (1991).

A. A. Yamamura, M. A. Neifeld, S. Kobayashi, D. Psaltis, “Optical-disk based artificial neural systems,” Opt. Comput. Process. 1, 3–13 (1991).

1990 (1)

N. Collings, S. G. Latham, R. C. Chittick, W. A. Crossland, “Reconfigurable optical interconnect using an optically addressed light valve,” Int. J. Opt. Comput. 1, 31–41 (1990).

Armenise, M. N.

M. N. Armenise, F. Impagnatiello, V. M. N. Passaro, “Design and simulation of a GaAs acousto-optic correlator for real-time processing,” Opt. Comput. Process. 2, 79–95 (1992).

Buczynski, R.

R. Buczynski, R. Ortega, T. Szoplik, R. Vounckx, P. Heremans, I. Veretennicoff, H. Thienpont, “Fast optical thresholding with an array of optical thyristor differential pairs,” J. Opt. A Pure Appl. Opt. 1, 276–279 (1999).
[CrossRef]

Chittick, R. C.

N. Collings, S. G. Latham, R. C. Chittick, W. A. Crossland, “Reconfigurable optical interconnect using an optically addressed light valve,” Int. J. Opt. Comput. 1, 31–41 (1990).

Collings, N.

N. Collings, S. G. Latham, R. C. Chittick, W. A. Crossland, “Reconfigurable optical interconnect using an optically addressed light valve,” Int. J. Opt. Comput. 1, 31–41 (1990).

Crossland, W. A.

W. A. Crossland, P. A. Kirkby, J. W. Parker, R. J. Westmore, “Some applications of optical networks in the architecture of electronic computers,” Opt. Comput. Process. 1, 199–209 (1991).

N. Collings, S. G. Latham, R. C. Chittick, W. A. Crossland, “Reconfigurable optical interconnect using an optically addressed light valve,” Int. J. Opt. Comput. 1, 31–41 (1990).

Fridkin, V. M.

V. M. Fridkin, The Physics of the Electrophotographic Process, 1st ed. (Focal, London, 1973).

V. M. Fridkin, Photoferroelectrics (Springer-Verlag, Berlin, 1979).
[CrossRef]

Gubkin, A. N.

A. N. Gubkin, Electreţi (Editura Tehnică, Bucureşti, Romania, 1963), translated from the Russian.

Heremans, P.

R. Buczynski, R. Ortega, T. Szoplik, R. Vounckx, P. Heremans, I. Veretennicoff, H. Thienpont, “Fast optical thresholding with an array of optical thyristor differential pairs,” J. Opt. A Pure Appl. Opt. 1, 276–279 (1999).
[CrossRef]

Impagnatiello, F.

M. N. Armenise, F. Impagnatiello, V. M. N. Passaro, “Design and simulation of a GaAs acousto-optic correlator for real-time processing,” Opt. Comput. Process. 2, 79–95 (1992).

Karasik, Y. B.

Y. B. Karasik, “The optical algorithm for the inverse Hough transform,” Opt. Comput. Process. 2, 127–137 (1992).

Kirkby, P. A.

W. A. Crossland, P. A. Kirkby, J. W. Parker, R. J. Westmore, “Some applications of optical networks in the architecture of electronic computers,” Opt. Comput. Process. 1, 199–209 (1991).

Kobayashi, S.

A. A. Yamamura, M. A. Neifeld, S. Kobayashi, D. Psaltis, “Optical-disk based artificial neural systems,” Opt. Comput. Process. 1, 3–13 (1991).

Latham, S. G.

N. Collings, S. G. Latham, R. C. Chittick, W. A. Crossland, “Reconfigurable optical interconnect using an optically addressed light valve,” Int. J. Opt. Comput. 1, 31–41 (1990).

Luck, A.

W. Weber, S. J. Prange, R. Thewes, E. Wohlrab, A. Luck, “On the application of the neuron MOS transistor principle for modern VLSI design,” IEEE Trans. Electron. Devices 43, 1700–1708 (1996).
[CrossRef]

Moagar-Poladian, G.

G. Moagăr-Poladian, “MOS transistor with a photoelectric controlled gate,” Int. J. Optoelectron. 12, 1–7 (1998).

Mort, J.

J. Mort, D. M. Pai, Photoconductivity and Related Phenomena (Elsevier, New York, 1976).

Neifeld, M. A.

A. A. Yamamura, M. A. Neifeld, S. Kobayashi, D. Psaltis, “Optical-disk based artificial neural systems,” Opt. Comput. Process. 1, 3–13 (1991).

Ortega, R.

R. Buczynski, R. Ortega, T. Szoplik, R. Vounckx, P. Heremans, I. Veretennicoff, H. Thienpont, “Fast optical thresholding with an array of optical thyristor differential pairs,” J. Opt. A Pure Appl. Opt. 1, 276–279 (1999).
[CrossRef]

Pai, D. M.

J. Mort, D. M. Pai, Photoconductivity and Related Phenomena (Elsevier, New York, 1976).

Parker, J. W.

W. A. Crossland, P. A. Kirkby, J. W. Parker, R. J. Westmore, “Some applications of optical networks in the architecture of electronic computers,” Opt. Comput. Process. 1, 199–209 (1991).

Passaro, V. M. N.

M. N. Armenise, F. Impagnatiello, V. M. N. Passaro, “Design and simulation of a GaAs acousto-optic correlator for real-time processing,” Opt. Comput. Process. 2, 79–95 (1992).

Prange, S. J.

W. Weber, S. J. Prange, R. Thewes, E. Wohlrab, A. Luck, “On the application of the neuron MOS transistor principle for modern VLSI design,” IEEE Trans. Electron. Devices 43, 1700–1708 (1996).
[CrossRef]

Psaltis, D.

A. A. Yamamura, M. A. Neifeld, S. Kobayashi, D. Psaltis, “Optical-disk based artificial neural systems,” Opt. Comput. Process. 1, 3–13 (1991).

Szoplik, T.

R. Buczynski, R. Ortega, T. Szoplik, R. Vounckx, P. Heremans, I. Veretennicoff, H. Thienpont, “Fast optical thresholding with an array of optical thyristor differential pairs,” J. Opt. A Pure Appl. Opt. 1, 276–279 (1999).
[CrossRef]

Thewes, R.

W. Weber, S. J. Prange, R. Thewes, E. Wohlrab, A. Luck, “On the application of the neuron MOS transistor principle for modern VLSI design,” IEEE Trans. Electron. Devices 43, 1700–1708 (1996).
[CrossRef]

Thienpont, H.

R. Buczynski, R. Ortega, T. Szoplik, R. Vounckx, P. Heremans, I. Veretennicoff, H. Thienpont, “Fast optical thresholding with an array of optical thyristor differential pairs,” J. Opt. A Pure Appl. Opt. 1, 276–279 (1999).
[CrossRef]

Veretennicoff, I.

R. Buczynski, R. Ortega, T. Szoplik, R. Vounckx, P. Heremans, I. Veretennicoff, H. Thienpont, “Fast optical thresholding with an array of optical thyristor differential pairs,” J. Opt. A Pure Appl. Opt. 1, 276–279 (1999).
[CrossRef]

Vounckx, R.

R. Buczynski, R. Ortega, T. Szoplik, R. Vounckx, P. Heremans, I. Veretennicoff, H. Thienpont, “Fast optical thresholding with an array of optical thyristor differential pairs,” J. Opt. A Pure Appl. Opt. 1, 276–279 (1999).
[CrossRef]

Weber, W.

W. Weber, S. J. Prange, R. Thewes, E. Wohlrab, A. Luck, “On the application of the neuron MOS transistor principle for modern VLSI design,” IEEE Trans. Electron. Devices 43, 1700–1708 (1996).
[CrossRef]

Westmore, R. J.

W. A. Crossland, P. A. Kirkby, J. W. Parker, R. J. Westmore, “Some applications of optical networks in the architecture of electronic computers,” Opt. Comput. Process. 1, 199–209 (1991).

Wohlrab, E.

W. Weber, S. J. Prange, R. Thewes, E. Wohlrab, A. Luck, “On the application of the neuron MOS transistor principle for modern VLSI design,” IEEE Trans. Electron. Devices 43, 1700–1708 (1996).
[CrossRef]

Yamamura, A. A.

A. A. Yamamura, M. A. Neifeld, S. Kobayashi, D. Psaltis, “Optical-disk based artificial neural systems,” Opt. Comput. Process. 1, 3–13 (1991).

IEEE Trans. Electron. Devices (1)

W. Weber, S. J. Prange, R. Thewes, E. Wohlrab, A. Luck, “On the application of the neuron MOS transistor principle for modern VLSI design,” IEEE Trans. Electron. Devices 43, 1700–1708 (1996).
[CrossRef]

Int. J. Opt. Comput. (1)

N. Collings, S. G. Latham, R. C. Chittick, W. A. Crossland, “Reconfigurable optical interconnect using an optically addressed light valve,” Int. J. Opt. Comput. 1, 31–41 (1990).

Int. J. Optoelectron. (1)

G. Moagăr-Poladian, “MOS transistor with a photoelectric controlled gate,” Int. J. Optoelectron. 12, 1–7 (1998).

J. Opt. A Pure Appl. Opt. (1)

R. Buczynski, R. Ortega, T. Szoplik, R. Vounckx, P. Heremans, I. Veretennicoff, H. Thienpont, “Fast optical thresholding with an array of optical thyristor differential pairs,” J. Opt. A Pure Appl. Opt. 1, 276–279 (1999).
[CrossRef]

Opt. Comput. Process. (4)

W. A. Crossland, P. A. Kirkby, J. W. Parker, R. J. Westmore, “Some applications of optical networks in the architecture of electronic computers,” Opt. Comput. Process. 1, 199–209 (1991).

M. N. Armenise, F. Impagnatiello, V. M. N. Passaro, “Design and simulation of a GaAs acousto-optic correlator for real-time processing,” Opt. Comput. Process. 2, 79–95 (1992).

Y. B. Karasik, “The optical algorithm for the inverse Hough transform,” Opt. Comput. Process. 2, 127–137 (1992).

A. A. Yamamura, M. A. Neifeld, S. Kobayashi, D. Psaltis, “Optical-disk based artificial neural systems,” Opt. Comput. Process. 1, 3–13 (1991).

Other (4)

V. M. Fridkin, Photoferroelectrics (Springer-Verlag, Berlin, 1979).
[CrossRef]

V. M. Fridkin, The Physics of the Electrophotographic Process, 1st ed. (Focal, London, 1973).

J. Mort, D. M. Pai, Photoconductivity and Related Phenomena (Elsevier, New York, 1976).

A. N. Gubkin, Electreţi (Editura Tehnică, Bucureşti, Romania, 1963), translated from the Russian.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Constituents of the weighting arrays as based on a sandwich-type structure that contains a photoelectret and an electro-optic medium. The significance of the elements is given in the text.

Fig. 2
Fig. 2

Representation of the array’s operating regimes: (a) Uniform charging of the array. (b) Patterning of the array’s surface-charge-density distribution. (c) Reading of the array.

Fig. 3
Fig. 3

Schematic diagram of the all-optical reconfigurable neuron based on a sandwich-type structure that contains a photoelectret and an electro-optic medium. BS, beam splitter.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Δσf=KΦ=KIt,
σf=KE,
VN=V0-σff df1+NdffdN+Nd11dN,
Iout=TI0,
T=cos2π VNVλ/2,
Ti=cos2πVλ/2V0-σfif df1+NdffdN+Nd11dN.
Ii=TiI0i.
Itot=i Ii=i TiI0i.
Wel=12 CVS=12 V1dff+dNN+d11,
W=Wet+WoptWopt=600 pJ/μm2.
Vphot=σff df1+NdffdN+Nd11dN.

Metrics