Abstract

An electrically controlled holographic switch is proposed as a building block for a free-space optical interconnection network. The switch is based on the voltage-controlled photorefractive effect in KLTN crystals at the paraelectric phase. It is built of electrically controlled Bragg gratings stored in the volume of the crystal. A compact switch that connects four high-speed fiber-optic communication channels with high efficiency is demonstrated experimentally. The switch performance is investigated and optimized. This switch is extremely attractive for cascaded switching arrays such as those found in multistage interconnect networks.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Agranat, V. Leyva, A. Yariv, “Voltage-controlled photorefractive effect in paraelectric KTa1-xNbxO3:Cu, V,” Opt. Lett. 14, 1017–1019 (1989).
    [CrossRef] [PubMed]
  2. J. W. Goodman, F. I. Leonberg, S. Y. Kung, R. A. Athale, “Optical interconnection for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
    [CrossRef]
  3. S. Somekh, E. Garmire, A. Yariv, H. L. Garvin, R. G. Hunsperger, “Channel optical waveguides and directional coupling in GaAs—imbedded and ridged,” Appl. Opt. 13, 327–330 (1974).
    [CrossRef] [PubMed]
  4. A. W. Lohman, W. Stork, G. Stucke, “Optical perfect shuffle,” Appl. Opt. 25, 1530–1531 (1986).
    [CrossRef]
  5. R. K. Kostuk, J. W. Goodman, L. Hesselink, “Design considerations for holographic optical interconnects,” Appl. Opt. 26, 3947–3953 (1987).
    [CrossRef] [PubMed]
  6. H. Yamazaki, S. Fukushima, “Holographic switch with a ferroelectric liquid-crystal spatial light modulator for a large-scale switch,” Appl. Opt. 34, 8137–8143 (1995).
    [CrossRef] [PubMed]
  7. H. S. Stone, “Parallel processing with perfect shuffle,” IEEE Trans. Comput. C-20, 152–161 (1971).
    [CrossRef]
  8. K. M. Johnson, M. R. Surette, J. Shamir, “Optical interconnections network using polarization-based ferroelectric liquid-crystal gates,” Appl. Opt. 27, 1727–1733 (1988).
    [CrossRef] [PubMed]
  9. H. Kogelnik, “Coupled-wave theory for thick hologram gratings,” Bell Sys. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  10. M. Balberg, M. Razvag, E. Refaelli, A. J. Agranat, “Electric field multiplexing of volume holograms in paraelectric crystals,” Appl. Opt. 37, 841–847 (1998).
    [CrossRef]
  11. R. Hofmeister, S. Yagi, A. Yariv, A. J. Agranat, “Growth and characterization of KLTN:Cu, V photorefractive crystals,” J. Cryst. Growth 131, 486–494 (1993).
    [CrossRef]
  12. K. Blotekjaer, “Limitations on the holographic storage capacity of photochromic and photorefractive media,” Appl. Opt. 18, 57–67 (1979).
    [CrossRef]
  13. F. H. Mok, G. W. Burr, D. Psaltis, “System metric for holographic memory system,” Opt. Lett. 21, 896–898 (1996).
    [CrossRef] [PubMed]
  14. B. Pesach, E. Refaelli, A. J. Agranat, “Investigationof the holographic storage capacity of paraelectric K1-xLixTa1-yNbyO3:Cu, V,” Opt. Lett. 23, 642–644 (1998).
    [CrossRef]
  15. D. Marom, P. E. Shames, F. Xu, Y. Fainman, “Folded free-space polarization-controlled multistage interconnection network,” Appl. Opt. 37, 6884–6891 (1998).
    [CrossRef]
  16. M. Razvag, Trellis Photonics Ltd., Jerusalem Technology Park, Jerusalem 96951, Israel (private communication, 8April1999).
  17. A. Agranat, A. Weissbrod, L. Secundo are preparing a paper titled “Fast optical switching by use of the voltage-controlled photorefractive effect” for future publication.

1998

1996

1995

1993

R. Hofmeister, S. Yagi, A. Yariv, A. J. Agranat, “Growth and characterization of KLTN:Cu, V photorefractive crystals,” J. Cryst. Growth 131, 486–494 (1993).
[CrossRef]

1989

1988

1987

1986

1984

J. W. Goodman, F. I. Leonberg, S. Y. Kung, R. A. Athale, “Optical interconnection for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

1979

1974

1971

H. S. Stone, “Parallel processing with perfect shuffle,” IEEE Trans. Comput. C-20, 152–161 (1971).
[CrossRef]

1969

H. Kogelnik, “Coupled-wave theory for thick hologram gratings,” Bell Sys. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Agranat, A.

A. Agranat, A. Weissbrod, L. Secundo are preparing a paper titled “Fast optical switching by use of the voltage-controlled photorefractive effect” for future publication.

Agranat, A. J.

Athale, R. A.

J. W. Goodman, F. I. Leonberg, S. Y. Kung, R. A. Athale, “Optical interconnection for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Balberg, M.

Blotekjaer, K.

Burr, G. W.

Fainman, Y.

Fukushima, S.

Garmire, E.

Garvin, H. L.

Goodman, J. W.

R. K. Kostuk, J. W. Goodman, L. Hesselink, “Design considerations for holographic optical interconnects,” Appl. Opt. 26, 3947–3953 (1987).
[CrossRef] [PubMed]

J. W. Goodman, F. I. Leonberg, S. Y. Kung, R. A. Athale, “Optical interconnection for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Hesselink, L.

Hofmeister, R.

R. Hofmeister, S. Yagi, A. Yariv, A. J. Agranat, “Growth and characterization of KLTN:Cu, V photorefractive crystals,” J. Cryst. Growth 131, 486–494 (1993).
[CrossRef]

Hunsperger, R. G.

Johnson, K. M.

Kogelnik, H.

H. Kogelnik, “Coupled-wave theory for thick hologram gratings,” Bell Sys. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Kostuk, R. K.

Kung, S. Y.

J. W. Goodman, F. I. Leonberg, S. Y. Kung, R. A. Athale, “Optical interconnection for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Leonberg, F. I.

J. W. Goodman, F. I. Leonberg, S. Y. Kung, R. A. Athale, “Optical interconnection for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Leyva, V.

Lohman, A. W.

Marom, D.

Mok, F. H.

Pesach, B.

Psaltis, D.

Razvag, M.

M. Balberg, M. Razvag, E. Refaelli, A. J. Agranat, “Electric field multiplexing of volume holograms in paraelectric crystals,” Appl. Opt. 37, 841–847 (1998).
[CrossRef]

M. Razvag, Trellis Photonics Ltd., Jerusalem Technology Park, Jerusalem 96951, Israel (private communication, 8April1999).

Refaelli, E.

Secundo, L.

A. Agranat, A. Weissbrod, L. Secundo are preparing a paper titled “Fast optical switching by use of the voltage-controlled photorefractive effect” for future publication.

Shames, P. E.

Shamir, J.

Somekh, S.

Stone, H. S.

H. S. Stone, “Parallel processing with perfect shuffle,” IEEE Trans. Comput. C-20, 152–161 (1971).
[CrossRef]

Stork, W.

Stucke, G.

Surette, M. R.

Weissbrod, A.

A. Agranat, A. Weissbrod, L. Secundo are preparing a paper titled “Fast optical switching by use of the voltage-controlled photorefractive effect” for future publication.

Xu, F.

Yagi, S.

R. Hofmeister, S. Yagi, A. Yariv, A. J. Agranat, “Growth and characterization of KLTN:Cu, V photorefractive crystals,” J. Cryst. Growth 131, 486–494 (1993).
[CrossRef]

Yamazaki, H.

Yariv, A.

Appl. Opt.

Bell Sys. Tech. J.

H. Kogelnik, “Coupled-wave theory for thick hologram gratings,” Bell Sys. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

IEEE Trans. Comput.

H. S. Stone, “Parallel processing with perfect shuffle,” IEEE Trans. Comput. C-20, 152–161 (1971).
[CrossRef]

J. Cryst. Growth

R. Hofmeister, S. Yagi, A. Yariv, A. J. Agranat, “Growth and characterization of KLTN:Cu, V photorefractive crystals,” J. Cryst. Growth 131, 486–494 (1993).
[CrossRef]

Opt. Lett.

Proc. IEEE

J. W. Goodman, F. I. Leonberg, S. Y. Kung, R. A. Athale, “Optical interconnection for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Other

M. Razvag, Trellis Photonics Ltd., Jerusalem Technology Park, Jerusalem 96951, Israel (private communication, 8April1999).

A. Agranat, A. Weissbrod, L. Secundo are preparing a paper titled “Fast optical switching by use of the voltage-controlled photorefractive effect” for future publication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Configuration for the writing and the reading of a transmission hologram: (a) writing the hologram with two coherent beams and (b) reading the hologram with the reference beam. The applied voltage V r controls the efficiency of the hologram. The arrow along the top of the crystal shows the direction of the grating wave vector K.

Fig. 2
Fig. 2

Diffraction efficiency η of 32 holograms written in a field of 2.1 kV/cm and read under different applied fields. The black (bottom) row was read under the same field as the writing field. The gray-shaded (middle) row was read under the opposite field, i.e., -2.1 kV/cm. The unshaded (uppermost) row was read under a field of -2.8 kV/cm.

Fig. 3
Fig. 3

Implementation of a bypass–exchange, or 2 × 2, switch by use of the EH effect. Each implementation shows the two possible states of the switch: (a) Schematic of a switch that uses a single crystal. In this switch the state is changed by the alteration of the applied voltage. (b) Schematic of a switch that uses two crystals. In this switch the state is changed by the flipping of the applied voltages between the two crystals.

Fig. 4
Fig. 4

Implementation of an EH digital switch that supports a full-access connection among four nodes. (a), (b), (c) The three possible cyclic permutations supported by this configuration. Applying a voltage to one of the crystals selects among the three permutations.

Fig. 5
Fig. 5

Schematic of the prototype of the four-port cross-connect switch. This system is used for the production of the switches, the measurement of their properties, and the cross-connection of four nodes with 1.2-Gbit/s fiber-optic channels. TR, transmitter; COL, fiber with a collimator at the end; IRM, infrared mirror; TS, translation stage; BS, 50/50 beam splitter; DIO, digital input–output; MC, motor control; TC, temperature control; RCV, receiver; HV, high-voltage power supply.

Fig. 6
Fig. 6

Holographic diffraction efficiency η of the switch when only one crystal is turned on plotted as a function of the probe angle. Each peak in the graph is produced by a grating stored in the crystal.

Fig. 7
Fig. 7

Illustration of the prototypical network architecture. Each of the four nodes is connected by two fibers to the cross-connect, one for input and one for output. Tx, transmitter; Rx, receiver.

Fig. 8
Fig. 8

BER testing of the switch prototype. The solid curve represents the computed quantum limit of the BER at a bit rate of 1.2 Gbits/s. The open circles (○) represent the direct measurement of the communication channel without the switch in the path. The stars (✴) represent the BER curve for a single channel routed by the switch while the second channel is inactive. The plus signs (+) represent the BER curve for the same channel while the second channel operates. The crosses (×) represent the BER curve for reducing the switch efficiency by means of decreasing the switching voltage.

Fig. 9
Fig. 9

Illustration of a multistage network. Each switch routes four channels by use of the banyan topology. The MIN shown connects 64 nodes with 48 switches.

Fig. 10
Fig. 10

Illustration of a 1000-node multistage network. Each layer contains 16 × 16 switches that can route four channels. The banyan topology is assumed to be the connection scheme between the layers.

Tables (2)

Tables Icon

Table 1 Comparison of the Switching Time and the Cost Among Several Common Free-Space Optical Routing Technologies

Tables Icon

Table 2 Predicted Performance of an Interconnection Network That Uses EH Switches with k = 4

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Δn=1/2n03geffP2,
P=E0+Escr,
Δnr=1/2n03g2E02+2E0Escr+Esc2r.
Λ=λ/2n0 sin θ,
δΔnr=n03geff2E0Escr.
η=exp-αdsin2πdλ cos θ n03g2E0Esc,
M/#=Mη,
θw1,2=θr1+θr22±sin-1λwλrsinθr1-θr22.
sin ϕr,w=n0 sin θr,w.
L=logk N,
S=Nk L=Nklogk N.
P=mS.
P=kS=NN/k,
Pmax=N!
ncrystals=N logk N.
ηminM/#k2 logk N.

Metrics