Abstract

A technique to remotely image temperature distributions of heated metallic surfaces is extended to higher temperatures. It uses a Dy+3:YAG thermographic phosphor (TP) bonded to the surface and excited by radiation at 355 nm. Digital images of the emission from two excited states were recorded and divided by each other to correct by normalization for illumination and coating nonuniformities. Results show that the TP can survive heating and cooling cycles to 1400 K and that emitting states achieve thermodynamic equilibrium before radiating. Temperatures in the range of 300–1300 K were determined by normalization of pairs of emission images with a single calibration constant. Uncertainties of ±7–13% at a spatial resolution of 20 µm and ±0.7–4% at a resolution of 500 µm were achieved.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. P. Goss, A. A. Smith, M. E. Post, “Surface thermometry by laser-induced fluorescence,” Rev. Sci. Instrum. 60, 3702–3706 (1989).
    [CrossRef]
  2. R. M. Measures, Laser Remote Sensing Fundamentals and Applications (Krieger, Malabar, Fla., 1992), p. 224.
  3. S. Alaruri, A. Brewington, M. Thomas, J. Miller, “High-temperature remote thermometry using laser-induced fluorescence decay lifetime measurements of Y2O3:Eu and YAG:Tb thermographic phosphors,” IEEE Trans. Instrum. Meas. 42, 735–739 (1993).
    [CrossRef]
  4. Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, “Spectral characteristics and effects of heat treatment on intrinsic Nd-doped fiber thermometer probes,” Rev. Sci. Instrum. 69, 139–145 (1998).
    [CrossRef]
  5. A. Sivaram, D. Ramachandra Rao, P. Venkateswarlu, “High-temperature fluorescence of Dy3+:LaF3 single crystal: emission from G-level,” Chem. Phys. Lett. 53, 247–249 (1978).
    [CrossRef]
  6. S. W. Allison, G. T. Gillies, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum. 68, 2615–2650 (1997).
    [CrossRef]
  7. B. Noel, W. Turley, W. Lewis, K. Tobin, D. Beshears, “Temperature, its measurement and control in science and industry—phosphor thermometry on turbine-engine blades and vanes,” Am. Inst. Phys. 6, 1249–1254 (1992).
  8. K. Tobin, M. Cates, D. Beshears, J. Muhs, G. Capps, D. Smith, W. Turley, W. Lewis, B. Noel, H. Borella, W. O’Brian, R. Roby, T. Anderson, “Engine testing of thermographic phosphors: Part 1&2,” (Oak Ridge National Laboratory, Oak Ridge, Tenn., 1990).
  9. M. Cates, K. Tobin, D. Smith, “Evaluation of thermographic phosphor technology for aerodynamic model testing,” (Oak Ridge National Laboratory, Oak Ridge, Tenn., 1990).
  10. K. Tobin, G. Capps, J. Muhs, D. Smith, M. Cates, “Dynamic high-temperature phosphor thermometry,” (Oak Ridge National Laboratory, Oak Ridge, Tenn., 1990).
  11. M. Cates, S. Allison, L. Franks, H. Borella, B. Marshall, B. Noel, “Laser-induced fluorescence of europium-doped yttrium oxide for remote high-temperature thermometry,” in Proceedings of the Medicine and Biology, Optical Techniques for Measurement and Control, Spectroscopy, Photochemistry, and Scientific Measurement Symposia of ICALEO ’85 (Laser Institute of America, Toledo Ohio, 1986), pp. 142–147.
  12. A. R. Bugos, “Characterization of the emission properties of thermographic phosphors for use in high temperature sensing applications,” M.S. thesis (University of Virginia, Charlottesville, Va., 1989).
  13. J. R. Lakowicz, H. K. Szmacinski, “Imaging applications of time-resolved fluorescence spectroscopy,” in Fluorescence Imaging Spectroscopy and Microscopy, X. F. Wang, B. Herman, eds. (Wiley, New York, 1996), Chap. 9, pp. 273–311.
  14. R. H. Krauss, R. G. Hellier, J. C. McDaniel, “Surface temperature imaging below 300 K using La2O2S:Eu,” Appl. Opt. 33, 3901–3904 (1994).
    [CrossRef] [PubMed]
  15. R. P. Marino, B. D. Westring, G. Laufer, R. H. Krauss, R. B. Whitehurst, “Optical full-field temperature and strain measurements,” AIAA J. 37, 1097–1101 (1999).
    [CrossRef]
  16. W. H. Fonger, C. W. Struck, “Eu3+5D resonance quenching to charge-transfer states in Y2O2S, La2O2S, and LaOCl,” J. Chem. Phys. 52, 6364–6372 (1970).
    [CrossRef]
  17. G. Laufer, Introduction to Optics and Lasers in Engineering (Cambridge U. Press, New York, 1989), pp. 322–325.
  18. L. P. Goss, A. A. Smith, “Application of fluorescence to measurement of surface temperature in solid propellants,” in Proceedings of the 21st JANNAF Combustion Meeting (The Johns Hopkins University, Applied Physics Laboratory, Laurel, Md., 1984), Vol. 1, pp. 241–249.
  19. Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, T. Sun, “Characterization of erbium-doped intrinsic optical fiber sensor probes at high temperatures,” Rev. Sci. Instrum. 69, 2924–2929 (1998).
    [CrossRef]

1999

R. P. Marino, B. D. Westring, G. Laufer, R. H. Krauss, R. B. Whitehurst, “Optical full-field temperature and strain measurements,” AIAA J. 37, 1097–1101 (1999).
[CrossRef]

1998

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, “Spectral characteristics and effects of heat treatment on intrinsic Nd-doped fiber thermometer probes,” Rev. Sci. Instrum. 69, 139–145 (1998).
[CrossRef]

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, T. Sun, “Characterization of erbium-doped intrinsic optical fiber sensor probes at high temperatures,” Rev. Sci. Instrum. 69, 2924–2929 (1998).
[CrossRef]

1997

S. W. Allison, G. T. Gillies, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum. 68, 2615–2650 (1997).
[CrossRef]

1994

1993

S. Alaruri, A. Brewington, M. Thomas, J. Miller, “High-temperature remote thermometry using laser-induced fluorescence decay lifetime measurements of Y2O3:Eu and YAG:Tb thermographic phosphors,” IEEE Trans. Instrum. Meas. 42, 735–739 (1993).
[CrossRef]

1992

B. Noel, W. Turley, W. Lewis, K. Tobin, D. Beshears, “Temperature, its measurement and control in science and industry—phosphor thermometry on turbine-engine blades and vanes,” Am. Inst. Phys. 6, 1249–1254 (1992).

1989

L. P. Goss, A. A. Smith, M. E. Post, “Surface thermometry by laser-induced fluorescence,” Rev. Sci. Instrum. 60, 3702–3706 (1989).
[CrossRef]

1978

A. Sivaram, D. Ramachandra Rao, P. Venkateswarlu, “High-temperature fluorescence of Dy3+:LaF3 single crystal: emission from G-level,” Chem. Phys. Lett. 53, 247–249 (1978).
[CrossRef]

1970

W. H. Fonger, C. W. Struck, “Eu3+5D resonance quenching to charge-transfer states in Y2O2S, La2O2S, and LaOCl,” J. Chem. Phys. 52, 6364–6372 (1970).
[CrossRef]

Alaruri, S.

S. Alaruri, A. Brewington, M. Thomas, J. Miller, “High-temperature remote thermometry using laser-induced fluorescence decay lifetime measurements of Y2O3:Eu and YAG:Tb thermographic phosphors,” IEEE Trans. Instrum. Meas. 42, 735–739 (1993).
[CrossRef]

Allison, S.

M. Cates, S. Allison, L. Franks, H. Borella, B. Marshall, B. Noel, “Laser-induced fluorescence of europium-doped yttrium oxide for remote high-temperature thermometry,” in Proceedings of the Medicine and Biology, Optical Techniques for Measurement and Control, Spectroscopy, Photochemistry, and Scientific Measurement Symposia of ICALEO ’85 (Laser Institute of America, Toledo Ohio, 1986), pp. 142–147.

Allison, S. W.

S. W. Allison, G. T. Gillies, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum. 68, 2615–2650 (1997).
[CrossRef]

Anderson, T.

K. Tobin, M. Cates, D. Beshears, J. Muhs, G. Capps, D. Smith, W. Turley, W. Lewis, B. Noel, H. Borella, W. O’Brian, R. Roby, T. Anderson, “Engine testing of thermographic phosphors: Part 1&2,” (Oak Ridge National Laboratory, Oak Ridge, Tenn., 1990).

Beshears, D.

B. Noel, W. Turley, W. Lewis, K. Tobin, D. Beshears, “Temperature, its measurement and control in science and industry—phosphor thermometry on turbine-engine blades and vanes,” Am. Inst. Phys. 6, 1249–1254 (1992).

K. Tobin, M. Cates, D. Beshears, J. Muhs, G. Capps, D. Smith, W. Turley, W. Lewis, B. Noel, H. Borella, W. O’Brian, R. Roby, T. Anderson, “Engine testing of thermographic phosphors: Part 1&2,” (Oak Ridge National Laboratory, Oak Ridge, Tenn., 1990).

Borella, H.

K. Tobin, M. Cates, D. Beshears, J. Muhs, G. Capps, D. Smith, W. Turley, W. Lewis, B. Noel, H. Borella, W. O’Brian, R. Roby, T. Anderson, “Engine testing of thermographic phosphors: Part 1&2,” (Oak Ridge National Laboratory, Oak Ridge, Tenn., 1990).

M. Cates, S. Allison, L. Franks, H. Borella, B. Marshall, B. Noel, “Laser-induced fluorescence of europium-doped yttrium oxide for remote high-temperature thermometry,” in Proceedings of the Medicine and Biology, Optical Techniques for Measurement and Control, Spectroscopy, Photochemistry, and Scientific Measurement Symposia of ICALEO ’85 (Laser Institute of America, Toledo Ohio, 1986), pp. 142–147.

Brewington, A.

S. Alaruri, A. Brewington, M. Thomas, J. Miller, “High-temperature remote thermometry using laser-induced fluorescence decay lifetime measurements of Y2O3:Eu and YAG:Tb thermographic phosphors,” IEEE Trans. Instrum. Meas. 42, 735–739 (1993).
[CrossRef]

Bugos, A. R.

A. R. Bugos, “Characterization of the emission properties of thermographic phosphors for use in high temperature sensing applications,” M.S. thesis (University of Virginia, Charlottesville, Va., 1989).

Capps, G.

K. Tobin, G. Capps, J. Muhs, D. Smith, M. Cates, “Dynamic high-temperature phosphor thermometry,” (Oak Ridge National Laboratory, Oak Ridge, Tenn., 1990).

K. Tobin, M. Cates, D. Beshears, J. Muhs, G. Capps, D. Smith, W. Turley, W. Lewis, B. Noel, H. Borella, W. O’Brian, R. Roby, T. Anderson, “Engine testing of thermographic phosphors: Part 1&2,” (Oak Ridge National Laboratory, Oak Ridge, Tenn., 1990).

Cates, M.

K. Tobin, M. Cates, D. Beshears, J. Muhs, G. Capps, D. Smith, W. Turley, W. Lewis, B. Noel, H. Borella, W. O’Brian, R. Roby, T. Anderson, “Engine testing of thermographic phosphors: Part 1&2,” (Oak Ridge National Laboratory, Oak Ridge, Tenn., 1990).

M. Cates, S. Allison, L. Franks, H. Borella, B. Marshall, B. Noel, “Laser-induced fluorescence of europium-doped yttrium oxide for remote high-temperature thermometry,” in Proceedings of the Medicine and Biology, Optical Techniques for Measurement and Control, Spectroscopy, Photochemistry, and Scientific Measurement Symposia of ICALEO ’85 (Laser Institute of America, Toledo Ohio, 1986), pp. 142–147.

M. Cates, K. Tobin, D. Smith, “Evaluation of thermographic phosphor technology for aerodynamic model testing,” (Oak Ridge National Laboratory, Oak Ridge, Tenn., 1990).

K. Tobin, G. Capps, J. Muhs, D. Smith, M. Cates, “Dynamic high-temperature phosphor thermometry,” (Oak Ridge National Laboratory, Oak Ridge, Tenn., 1990).

Fonger, W. H.

W. H. Fonger, C. W. Struck, “Eu3+5D resonance quenching to charge-transfer states in Y2O2S, La2O2S, and LaOCl,” J. Chem. Phys. 52, 6364–6372 (1970).
[CrossRef]

Franks, L.

M. Cates, S. Allison, L. Franks, H. Borella, B. Marshall, B. Noel, “Laser-induced fluorescence of europium-doped yttrium oxide for remote high-temperature thermometry,” in Proceedings of the Medicine and Biology, Optical Techniques for Measurement and Control, Spectroscopy, Photochemistry, and Scientific Measurement Symposia of ICALEO ’85 (Laser Institute of America, Toledo Ohio, 1986), pp. 142–147.

Gillies, G. T.

S. W. Allison, G. T. Gillies, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum. 68, 2615–2650 (1997).
[CrossRef]

Goss, L. P.

L. P. Goss, A. A. Smith, M. E. Post, “Surface thermometry by laser-induced fluorescence,” Rev. Sci. Instrum. 60, 3702–3706 (1989).
[CrossRef]

L. P. Goss, A. A. Smith, “Application of fluorescence to measurement of surface temperature in solid propellants,” in Proceedings of the 21st JANNAF Combustion Meeting (The Johns Hopkins University, Applied Physics Laboratory, Laurel, Md., 1984), Vol. 1, pp. 241–249.

Grattan, K. T. V.

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, T. Sun, “Characterization of erbium-doped intrinsic optical fiber sensor probes at high temperatures,” Rev. Sci. Instrum. 69, 2924–2929 (1998).
[CrossRef]

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, “Spectral characteristics and effects of heat treatment on intrinsic Nd-doped fiber thermometer probes,” Rev. Sci. Instrum. 69, 139–145 (1998).
[CrossRef]

Hellier, R. G.

Krauss, R. H.

R. P. Marino, B. D. Westring, G. Laufer, R. H. Krauss, R. B. Whitehurst, “Optical full-field temperature and strain measurements,” AIAA J. 37, 1097–1101 (1999).
[CrossRef]

R. H. Krauss, R. G. Hellier, J. C. McDaniel, “Surface temperature imaging below 300 K using La2O2S:Eu,” Appl. Opt. 33, 3901–3904 (1994).
[CrossRef] [PubMed]

Lakowicz, J. R.

J. R. Lakowicz, H. K. Szmacinski, “Imaging applications of time-resolved fluorescence spectroscopy,” in Fluorescence Imaging Spectroscopy and Microscopy, X. F. Wang, B. Herman, eds. (Wiley, New York, 1996), Chap. 9, pp. 273–311.

Laufer, G.

R. P. Marino, B. D. Westring, G. Laufer, R. H. Krauss, R. B. Whitehurst, “Optical full-field temperature and strain measurements,” AIAA J. 37, 1097–1101 (1999).
[CrossRef]

G. Laufer, Introduction to Optics and Lasers in Engineering (Cambridge U. Press, New York, 1989), pp. 322–325.

Lewis, W.

B. Noel, W. Turley, W. Lewis, K. Tobin, D. Beshears, “Temperature, its measurement and control in science and industry—phosphor thermometry on turbine-engine blades and vanes,” Am. Inst. Phys. 6, 1249–1254 (1992).

K. Tobin, M. Cates, D. Beshears, J. Muhs, G. Capps, D. Smith, W. Turley, W. Lewis, B. Noel, H. Borella, W. O’Brian, R. Roby, T. Anderson, “Engine testing of thermographic phosphors: Part 1&2,” (Oak Ridge National Laboratory, Oak Ridge, Tenn., 1990).

Marino, R. P.

R. P. Marino, B. D. Westring, G. Laufer, R. H. Krauss, R. B. Whitehurst, “Optical full-field temperature and strain measurements,” AIAA J. 37, 1097–1101 (1999).
[CrossRef]

Marshall, B.

M. Cates, S. Allison, L. Franks, H. Borella, B. Marshall, B. Noel, “Laser-induced fluorescence of europium-doped yttrium oxide for remote high-temperature thermometry,” in Proceedings of the Medicine and Biology, Optical Techniques for Measurement and Control, Spectroscopy, Photochemistry, and Scientific Measurement Symposia of ICALEO ’85 (Laser Institute of America, Toledo Ohio, 1986), pp. 142–147.

McDaniel, J. C.

Measures, R. M.

R. M. Measures, Laser Remote Sensing Fundamentals and Applications (Krieger, Malabar, Fla., 1992), p. 224.

Meggitt, B. T.

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, “Spectral characteristics and effects of heat treatment on intrinsic Nd-doped fiber thermometer probes,” Rev. Sci. Instrum. 69, 139–145 (1998).
[CrossRef]

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, T. Sun, “Characterization of erbium-doped intrinsic optical fiber sensor probes at high temperatures,” Rev. Sci. Instrum. 69, 2924–2929 (1998).
[CrossRef]

Miller, J.

S. Alaruri, A. Brewington, M. Thomas, J. Miller, “High-temperature remote thermometry using laser-induced fluorescence decay lifetime measurements of Y2O3:Eu and YAG:Tb thermographic phosphors,” IEEE Trans. Instrum. Meas. 42, 735–739 (1993).
[CrossRef]

Muhs, J.

K. Tobin, G. Capps, J. Muhs, D. Smith, M. Cates, “Dynamic high-temperature phosphor thermometry,” (Oak Ridge National Laboratory, Oak Ridge, Tenn., 1990).

K. Tobin, M. Cates, D. Beshears, J. Muhs, G. Capps, D. Smith, W. Turley, W. Lewis, B. Noel, H. Borella, W. O’Brian, R. Roby, T. Anderson, “Engine testing of thermographic phosphors: Part 1&2,” (Oak Ridge National Laboratory, Oak Ridge, Tenn., 1990).

Noel, B.

B. Noel, W. Turley, W. Lewis, K. Tobin, D. Beshears, “Temperature, its measurement and control in science and industry—phosphor thermometry on turbine-engine blades and vanes,” Am. Inst. Phys. 6, 1249–1254 (1992).

M. Cates, S. Allison, L. Franks, H. Borella, B. Marshall, B. Noel, “Laser-induced fluorescence of europium-doped yttrium oxide for remote high-temperature thermometry,” in Proceedings of the Medicine and Biology, Optical Techniques for Measurement and Control, Spectroscopy, Photochemistry, and Scientific Measurement Symposia of ICALEO ’85 (Laser Institute of America, Toledo Ohio, 1986), pp. 142–147.

K. Tobin, M. Cates, D. Beshears, J. Muhs, G. Capps, D. Smith, W. Turley, W. Lewis, B. Noel, H. Borella, W. O’Brian, R. Roby, T. Anderson, “Engine testing of thermographic phosphors: Part 1&2,” (Oak Ridge National Laboratory, Oak Ridge, Tenn., 1990).

O’Brian, W.

K. Tobin, M. Cates, D. Beshears, J. Muhs, G. Capps, D. Smith, W. Turley, W. Lewis, B. Noel, H. Borella, W. O’Brian, R. Roby, T. Anderson, “Engine testing of thermographic phosphors: Part 1&2,” (Oak Ridge National Laboratory, Oak Ridge, Tenn., 1990).

Palmer, A. W.

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, T. Sun, “Characterization of erbium-doped intrinsic optical fiber sensor probes at high temperatures,” Rev. Sci. Instrum. 69, 2924–2929 (1998).
[CrossRef]

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, “Spectral characteristics and effects of heat treatment on intrinsic Nd-doped fiber thermometer probes,” Rev. Sci. Instrum. 69, 139–145 (1998).
[CrossRef]

Post, M. E.

L. P. Goss, A. A. Smith, M. E. Post, “Surface thermometry by laser-induced fluorescence,” Rev. Sci. Instrum. 60, 3702–3706 (1989).
[CrossRef]

Ramachandra Rao, D.

A. Sivaram, D. Ramachandra Rao, P. Venkateswarlu, “High-temperature fluorescence of Dy3+:LaF3 single crystal: emission from G-level,” Chem. Phys. Lett. 53, 247–249 (1978).
[CrossRef]

Roby, R.

K. Tobin, M. Cates, D. Beshears, J. Muhs, G. Capps, D. Smith, W. Turley, W. Lewis, B. Noel, H. Borella, W. O’Brian, R. Roby, T. Anderson, “Engine testing of thermographic phosphors: Part 1&2,” (Oak Ridge National Laboratory, Oak Ridge, Tenn., 1990).

Sivaram, A.

A. Sivaram, D. Ramachandra Rao, P. Venkateswarlu, “High-temperature fluorescence of Dy3+:LaF3 single crystal: emission from G-level,” Chem. Phys. Lett. 53, 247–249 (1978).
[CrossRef]

Smith, A. A.

L. P. Goss, A. A. Smith, M. E. Post, “Surface thermometry by laser-induced fluorescence,” Rev. Sci. Instrum. 60, 3702–3706 (1989).
[CrossRef]

L. P. Goss, A. A. Smith, “Application of fluorescence to measurement of surface temperature in solid propellants,” in Proceedings of the 21st JANNAF Combustion Meeting (The Johns Hopkins University, Applied Physics Laboratory, Laurel, Md., 1984), Vol. 1, pp. 241–249.

Smith, D.

K. Tobin, M. Cates, D. Beshears, J. Muhs, G. Capps, D. Smith, W. Turley, W. Lewis, B. Noel, H. Borella, W. O’Brian, R. Roby, T. Anderson, “Engine testing of thermographic phosphors: Part 1&2,” (Oak Ridge National Laboratory, Oak Ridge, Tenn., 1990).

M. Cates, K. Tobin, D. Smith, “Evaluation of thermographic phosphor technology for aerodynamic model testing,” (Oak Ridge National Laboratory, Oak Ridge, Tenn., 1990).

K. Tobin, G. Capps, J. Muhs, D. Smith, M. Cates, “Dynamic high-temperature phosphor thermometry,” (Oak Ridge National Laboratory, Oak Ridge, Tenn., 1990).

Struck, C. W.

W. H. Fonger, C. W. Struck, “Eu3+5D resonance quenching to charge-transfer states in Y2O2S, La2O2S, and LaOCl,” J. Chem. Phys. 52, 6364–6372 (1970).
[CrossRef]

Sun, T.

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, T. Sun, “Characterization of erbium-doped intrinsic optical fiber sensor probes at high temperatures,” Rev. Sci. Instrum. 69, 2924–2929 (1998).
[CrossRef]

Szmacinski, H. K.

J. R. Lakowicz, H. K. Szmacinski, “Imaging applications of time-resolved fluorescence spectroscopy,” in Fluorescence Imaging Spectroscopy and Microscopy, X. F. Wang, B. Herman, eds. (Wiley, New York, 1996), Chap. 9, pp. 273–311.

Thomas, M.

S. Alaruri, A. Brewington, M. Thomas, J. Miller, “High-temperature remote thermometry using laser-induced fluorescence decay lifetime measurements of Y2O3:Eu and YAG:Tb thermographic phosphors,” IEEE Trans. Instrum. Meas. 42, 735–739 (1993).
[CrossRef]

Tobin, K.

B. Noel, W. Turley, W. Lewis, K. Tobin, D. Beshears, “Temperature, its measurement and control in science and industry—phosphor thermometry on turbine-engine blades and vanes,” Am. Inst. Phys. 6, 1249–1254 (1992).

M. Cates, K. Tobin, D. Smith, “Evaluation of thermographic phosphor technology for aerodynamic model testing,” (Oak Ridge National Laboratory, Oak Ridge, Tenn., 1990).

K. Tobin, M. Cates, D. Beshears, J. Muhs, G. Capps, D. Smith, W. Turley, W. Lewis, B. Noel, H. Borella, W. O’Brian, R. Roby, T. Anderson, “Engine testing of thermographic phosphors: Part 1&2,” (Oak Ridge National Laboratory, Oak Ridge, Tenn., 1990).

K. Tobin, G. Capps, J. Muhs, D. Smith, M. Cates, “Dynamic high-temperature phosphor thermometry,” (Oak Ridge National Laboratory, Oak Ridge, Tenn., 1990).

Turley, W.

B. Noel, W. Turley, W. Lewis, K. Tobin, D. Beshears, “Temperature, its measurement and control in science and industry—phosphor thermometry on turbine-engine blades and vanes,” Am. Inst. Phys. 6, 1249–1254 (1992).

K. Tobin, M. Cates, D. Beshears, J. Muhs, G. Capps, D. Smith, W. Turley, W. Lewis, B. Noel, H. Borella, W. O’Brian, R. Roby, T. Anderson, “Engine testing of thermographic phosphors: Part 1&2,” (Oak Ridge National Laboratory, Oak Ridge, Tenn., 1990).

Venkateswarlu, P.

A. Sivaram, D. Ramachandra Rao, P. Venkateswarlu, “High-temperature fluorescence of Dy3+:LaF3 single crystal: emission from G-level,” Chem. Phys. Lett. 53, 247–249 (1978).
[CrossRef]

Westring, B. D.

R. P. Marino, B. D. Westring, G. Laufer, R. H. Krauss, R. B. Whitehurst, “Optical full-field temperature and strain measurements,” AIAA J. 37, 1097–1101 (1999).
[CrossRef]

Whitehurst, R. B.

R. P. Marino, B. D. Westring, G. Laufer, R. H. Krauss, R. B. Whitehurst, “Optical full-field temperature and strain measurements,” AIAA J. 37, 1097–1101 (1999).
[CrossRef]

Zhang, Z. Y.

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, “Spectral characteristics and effects of heat treatment on intrinsic Nd-doped fiber thermometer probes,” Rev. Sci. Instrum. 69, 139–145 (1998).
[CrossRef]

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, T. Sun, “Characterization of erbium-doped intrinsic optical fiber sensor probes at high temperatures,” Rev. Sci. Instrum. 69, 2924–2929 (1998).
[CrossRef]

AIAA J.

R. P. Marino, B. D. Westring, G. Laufer, R. H. Krauss, R. B. Whitehurst, “Optical full-field temperature and strain measurements,” AIAA J. 37, 1097–1101 (1999).
[CrossRef]

Am. Inst. Phys.

B. Noel, W. Turley, W. Lewis, K. Tobin, D. Beshears, “Temperature, its measurement and control in science and industry—phosphor thermometry on turbine-engine blades and vanes,” Am. Inst. Phys. 6, 1249–1254 (1992).

Appl. Opt.

Chem. Phys. Lett.

A. Sivaram, D. Ramachandra Rao, P. Venkateswarlu, “High-temperature fluorescence of Dy3+:LaF3 single crystal: emission from G-level,” Chem. Phys. Lett. 53, 247–249 (1978).
[CrossRef]

IEEE Trans. Instrum. Meas.

S. Alaruri, A. Brewington, M. Thomas, J. Miller, “High-temperature remote thermometry using laser-induced fluorescence decay lifetime measurements of Y2O3:Eu and YAG:Tb thermographic phosphors,” IEEE Trans. Instrum. Meas. 42, 735–739 (1993).
[CrossRef]

J. Chem. Phys.

W. H. Fonger, C. W. Struck, “Eu3+5D resonance quenching to charge-transfer states in Y2O2S, La2O2S, and LaOCl,” J. Chem. Phys. 52, 6364–6372 (1970).
[CrossRef]

Rev. Sci. Instrum.

S. W. Allison, G. T. Gillies, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum. 68, 2615–2650 (1997).
[CrossRef]

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, T. Sun, “Characterization of erbium-doped intrinsic optical fiber sensor probes at high temperatures,” Rev. Sci. Instrum. 69, 2924–2929 (1998).
[CrossRef]

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, “Spectral characteristics and effects of heat treatment on intrinsic Nd-doped fiber thermometer probes,” Rev. Sci. Instrum. 69, 139–145 (1998).
[CrossRef]

L. P. Goss, A. A. Smith, M. E. Post, “Surface thermometry by laser-induced fluorescence,” Rev. Sci. Instrum. 60, 3702–3706 (1989).
[CrossRef]

Other

R. M. Measures, Laser Remote Sensing Fundamentals and Applications (Krieger, Malabar, Fla., 1992), p. 224.

K. Tobin, M. Cates, D. Beshears, J. Muhs, G. Capps, D. Smith, W. Turley, W. Lewis, B. Noel, H. Borella, W. O’Brian, R. Roby, T. Anderson, “Engine testing of thermographic phosphors: Part 1&2,” (Oak Ridge National Laboratory, Oak Ridge, Tenn., 1990).

M. Cates, K. Tobin, D. Smith, “Evaluation of thermographic phosphor technology for aerodynamic model testing,” (Oak Ridge National Laboratory, Oak Ridge, Tenn., 1990).

K. Tobin, G. Capps, J. Muhs, D. Smith, M. Cates, “Dynamic high-temperature phosphor thermometry,” (Oak Ridge National Laboratory, Oak Ridge, Tenn., 1990).

M. Cates, S. Allison, L. Franks, H. Borella, B. Marshall, B. Noel, “Laser-induced fluorescence of europium-doped yttrium oxide for remote high-temperature thermometry,” in Proceedings of the Medicine and Biology, Optical Techniques for Measurement and Control, Spectroscopy, Photochemistry, and Scientific Measurement Symposia of ICALEO ’85 (Laser Institute of America, Toledo Ohio, 1986), pp. 142–147.

A. R. Bugos, “Characterization of the emission properties of thermographic phosphors for use in high temperature sensing applications,” M.S. thesis (University of Virginia, Charlottesville, Va., 1989).

J. R. Lakowicz, H. K. Szmacinski, “Imaging applications of time-resolved fluorescence spectroscopy,” in Fluorescence Imaging Spectroscopy and Microscopy, X. F. Wang, B. Herman, eds. (Wiley, New York, 1996), Chap. 9, pp. 273–311.

G. Laufer, Introduction to Optics and Lasers in Engineering (Cambridge U. Press, New York, 1989), pp. 322–325.

L. P. Goss, A. A. Smith, “Application of fluorescence to measurement of surface temperature in solid propellants,” in Proceedings of the 21st JANNAF Combustion Meeting (The Johns Hopkins University, Applied Physics Laboratory, Laurel, Md., 1984), Vol. 1, pp. 241–249.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Energy-level diagram of Dy+3:YAG.

Fig. 2
Fig. 2

Experimental setup for a demonstration of temperature imaging with TP.

Fig. 3
Fig. 3

Dispersion spectra of the emission by Dy+3:YAG at various temperatures following 12-h heating, cooling, and reheating. The spectra are induced by the third harmonic of a Nd:YAG laser beam at 355 nm.

Fig. 4
Fig. 4

Images of the temperature distribution of homogeneously heated 3 cm × 3 cm sample at selected temperatures ranging from 295 to 1166 K.

Fig. 5
Fig. 5

Boltzmann plot describing the temperature dependence of the normalized emission by Dy+3:YAG following excitation at 355 nm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Ii=A exp-hcEikT,
R=IGIF=B exp-hcΔEikT.
ΔR=BhcΔEikT2exp-hcΔEikTΔT.
ΔTT=kThcΔEiΔRR,

Metrics