Abstract

We demonstrate what we believe is the first application of the recently developed electrically pumped GaAs/AlGaAs quantum-cascade lasers in a spectroscopic gas-sensing system by use of hollow waveguides. Laser light with an emission maximum at 10.009 µm is used to investigate the mid-infrared absorption of ethene at atmospheric pressure. We used a 434-mm-long silver-coated silica hollow waveguide as a sensing element, which served as a gas absorption cell. Different mixtures of helium and ethene with known concentrations are flushed through the waveguide while the laser radiation that passes through the waveguide is analyzed with a Fourier-transform infrared spectrometer. The experimentally obtained discrete ethene spectrum agrees well with the calculated spectrum. A detection threshold of 250 parts per million is achieved with the current setup.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. B. Davies, P. M. Martineau, “Infrared diode laser diagnostics of methane plasmas produced in a deposition reactor,” Appl. Phys. Lett. 57, 237–239 (1990).
    [CrossRef]
  2. M. Kroll, J. A. McClintock, O. Ollinger, “Measurement of gaseous oxygen using diode laser spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
    [CrossRef]
  3. T. E. Gough, R. E. Miller, G. Scoles, “Infrared laser spectroscopy of molecular beams,” Appl. Phys. Lett. 30, 338–340 (1977).
    [CrossRef]
  4. F. G. Celii, P. E. Pehrsson, H. C. Wang, J. E. Butler, “Infrared detection of gaseous species during the filament-assisted growth of diamond,” Appl. Phys. Lett. 52, 2043–2045 (1988).
    [CrossRef]
  5. H. Jalink, D. Bicanic, “Concept, design, and use of the photoacoustic heat pipe cell,” Appl. Phys. Lett. 55, 1507–1509 (1989).
    [CrossRef]
  6. M. A. Taubenblatt, “Photothermal absorption microprobe: infrared spectroscopy of a single 1 µm organic particle,” Appl. Phys. Lett. 52, 951–953 (1988).
    [CrossRef]
  7. S. Simhony, A. Katzir, “Remote monitoring of ammonia using a CO2 laser and infrared fibers,” Appl. Phys. Lett. 47, 1241–1243 (1985).
    [CrossRef]
  8. K. M. Evenson, D. A. Jennings, F. R. Petersen, “Tunable far-infrared spectroscopy,” Appl. Phys. Lett. 44, 576–578 (1984).
    [CrossRef]
  9. P. Magerl, J. M. Frye, W. A. Kreiner, T. Oka, “Inverse Lamb dip spectroscopy using microwave modulation sidebands of CO2 laser lines,” Appl. Phys. Lett. 42, 656–658 (1983).
    [CrossRef]
  10. C. C. Davis, “Trace detection in gases using phase fluctuation optical heterodyne spectroscopy,” Appl. Phys. Lett. 36, 515–518 (1980).
    [CrossRef]
  11. B. Spanger, U. Schiessl, A. Lambrecht, H. Böttner, M. Tacke, “Near-room-temperature operation of Pb1–xSrxSe infrared diode lasers using molecular beam epitaxy growth techniques,” Appl. Phys. Lett. 53, 2582–2583 (1988).
    [CrossRef]
  12. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
    [CrossRef] [PubMed]
  13. S. W. Sharpe, J. F. Kelly, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “High-resolution (Doppler-limited) spectroscopy using quantum-cascade distributed-feedback lasers,” Opt. Lett. 23, 1396–1398 (1998).
    [CrossRef]
  14. O. Gauthier-Lafaye, S. Sauvage, P. Boucaud, F. H. Julien, R. Prazeres, F. Glotin, J.-M. Ortega, V. Thierry-Mieg, R. Planel, J.-P. Leburton, V. Berger, “Intersubband stimulated emission in GaAs/AlGaAs quantum wells: pump–probe experiments using a two-color free-electron laser,” Appl. Phys. Lett. 70, 3197–3199 (1997).
    [CrossRef]
  15. C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, U. Oesterle, “GaAs/AlxGa1–xAs quantum cascade lasers,” Appl. Phys. Lett. 73, 3486–3488 (1998).
    [CrossRef]
  16. G. Strasser, S. Gianordoli, L. Hvozdara, W. Schrenk, K. Unterrainer, E. Gornik, “GaAs/AlGaAs superlattice quantum cascade lasers at 13 µm,” Appl. Phys. Lett. 75, 1345–1348 (1999).
    [CrossRef]
  17. E. Rusinek, H. Fichoux, M. Khelkhal, F. Herlemont, J. Legrand, A. Fayt, “Sub-Doppler study of the 7 band of C2H4 with a CO2 laser sideband spectrometer,” J. Mol. Spectrosc. 189, 64–73 (1998).
    [CrossRef] [PubMed]
  18. N. Croitoru, A. Inberg, R. Dahan, M. David, “Scattering and beam profile measurements of plastic, silica, and metal radiation waveguides,” J. Biomed. Opt. 2, 235–242 (1997).
    [CrossRef] [PubMed]
  19. R. Dahan, J. Dror, A. Inberg, N. Croitoru, “Scattering of IR and visible radiation from hollow waveguides,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 115–119 (1995).
    [CrossRef]
  20. C. Worrell, N. Gallen, “Trace-level detection of gases with mid-infra-red hollow waveguides,” J. Phys. D 30, 1984–1995 (1997).
    [CrossRef]
  21. J. Harrington, Y. Matsuura, “Review of hollow waveguide technology,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 4–14 (1995).
    [CrossRef]

1999 (1)

G. Strasser, S. Gianordoli, L. Hvozdara, W. Schrenk, K. Unterrainer, E. Gornik, “GaAs/AlGaAs superlattice quantum cascade lasers at 13 µm,” Appl. Phys. Lett. 75, 1345–1348 (1999).
[CrossRef]

1998 (3)

E. Rusinek, H. Fichoux, M. Khelkhal, F. Herlemont, J. Legrand, A. Fayt, “Sub-Doppler study of the 7 band of C2H4 with a CO2 laser sideband spectrometer,” J. Mol. Spectrosc. 189, 64–73 (1998).
[CrossRef] [PubMed]

C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, U. Oesterle, “GaAs/AlxGa1–xAs quantum cascade lasers,” Appl. Phys. Lett. 73, 3486–3488 (1998).
[CrossRef]

S. W. Sharpe, J. F. Kelly, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “High-resolution (Doppler-limited) spectroscopy using quantum-cascade distributed-feedback lasers,” Opt. Lett. 23, 1396–1398 (1998).
[CrossRef]

1997 (3)

O. Gauthier-Lafaye, S. Sauvage, P. Boucaud, F. H. Julien, R. Prazeres, F. Glotin, J.-M. Ortega, V. Thierry-Mieg, R. Planel, J.-P. Leburton, V. Berger, “Intersubband stimulated emission in GaAs/AlGaAs quantum wells: pump–probe experiments using a two-color free-electron laser,” Appl. Phys. Lett. 70, 3197–3199 (1997).
[CrossRef]

N. Croitoru, A. Inberg, R. Dahan, M. David, “Scattering and beam profile measurements of plastic, silica, and metal radiation waveguides,” J. Biomed. Opt. 2, 235–242 (1997).
[CrossRef] [PubMed]

C. Worrell, N. Gallen, “Trace-level detection of gases with mid-infra-red hollow waveguides,” J. Phys. D 30, 1984–1995 (1997).
[CrossRef]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

1990 (1)

P. B. Davies, P. M. Martineau, “Infrared diode laser diagnostics of methane plasmas produced in a deposition reactor,” Appl. Phys. Lett. 57, 237–239 (1990).
[CrossRef]

1989 (1)

H. Jalink, D. Bicanic, “Concept, design, and use of the photoacoustic heat pipe cell,” Appl. Phys. Lett. 55, 1507–1509 (1989).
[CrossRef]

1988 (3)

M. A. Taubenblatt, “Photothermal absorption microprobe: infrared spectroscopy of a single 1 µm organic particle,” Appl. Phys. Lett. 52, 951–953 (1988).
[CrossRef]

F. G. Celii, P. E. Pehrsson, H. C. Wang, J. E. Butler, “Infrared detection of gaseous species during the filament-assisted growth of diamond,” Appl. Phys. Lett. 52, 2043–2045 (1988).
[CrossRef]

B. Spanger, U. Schiessl, A. Lambrecht, H. Böttner, M. Tacke, “Near-room-temperature operation of Pb1–xSrxSe infrared diode lasers using molecular beam epitaxy growth techniques,” Appl. Phys. Lett. 53, 2582–2583 (1988).
[CrossRef]

1987 (1)

M. Kroll, J. A. McClintock, O. Ollinger, “Measurement of gaseous oxygen using diode laser spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
[CrossRef]

1985 (1)

S. Simhony, A. Katzir, “Remote monitoring of ammonia using a CO2 laser and infrared fibers,” Appl. Phys. Lett. 47, 1241–1243 (1985).
[CrossRef]

1984 (1)

K. M. Evenson, D. A. Jennings, F. R. Petersen, “Tunable far-infrared spectroscopy,” Appl. Phys. Lett. 44, 576–578 (1984).
[CrossRef]

1983 (1)

P. Magerl, J. M. Frye, W. A. Kreiner, T. Oka, “Inverse Lamb dip spectroscopy using microwave modulation sidebands of CO2 laser lines,” Appl. Phys. Lett. 42, 656–658 (1983).
[CrossRef]

1980 (1)

C. C. Davis, “Trace detection in gases using phase fluctuation optical heterodyne spectroscopy,” Appl. Phys. Lett. 36, 515–518 (1980).
[CrossRef]

1977 (1)

T. E. Gough, R. E. Miller, G. Scoles, “Infrared laser spectroscopy of molecular beams,” Appl. Phys. Lett. 30, 338–340 (1977).
[CrossRef]

Baillargeon, J. N.

Barbieri, S.

C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, U. Oesterle, “GaAs/AlxGa1–xAs quantum cascade lasers,” Appl. Phys. Lett. 73, 3486–3488 (1998).
[CrossRef]

Beck, M.

C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, U. Oesterle, “GaAs/AlxGa1–xAs quantum cascade lasers,” Appl. Phys. Lett. 73, 3486–3488 (1998).
[CrossRef]

Berger, V.

O. Gauthier-Lafaye, S. Sauvage, P. Boucaud, F. H. Julien, R. Prazeres, F. Glotin, J.-M. Ortega, V. Thierry-Mieg, R. Planel, J.-P. Leburton, V. Berger, “Intersubband stimulated emission in GaAs/AlGaAs quantum wells: pump–probe experiments using a two-color free-electron laser,” Appl. Phys. Lett. 70, 3197–3199 (1997).
[CrossRef]

Bicanic, D.

H. Jalink, D. Bicanic, “Concept, design, and use of the photoacoustic heat pipe cell,” Appl. Phys. Lett. 55, 1507–1509 (1989).
[CrossRef]

Böttner, H.

B. Spanger, U. Schiessl, A. Lambrecht, H. Böttner, M. Tacke, “Near-room-temperature operation of Pb1–xSrxSe infrared diode lasers using molecular beam epitaxy growth techniques,” Appl. Phys. Lett. 53, 2582–2583 (1988).
[CrossRef]

Boucaud, P.

O. Gauthier-Lafaye, S. Sauvage, P. Boucaud, F. H. Julien, R. Prazeres, F. Glotin, J.-M. Ortega, V. Thierry-Mieg, R. Planel, J.-P. Leburton, V. Berger, “Intersubband stimulated emission in GaAs/AlGaAs quantum wells: pump–probe experiments using a two-color free-electron laser,” Appl. Phys. Lett. 70, 3197–3199 (1997).
[CrossRef]

Butler, J. E.

F. G. Celii, P. E. Pehrsson, H. C. Wang, J. E. Butler, “Infrared detection of gaseous species during the filament-assisted growth of diamond,” Appl. Phys. Lett. 52, 2043–2045 (1988).
[CrossRef]

Capasso, F.

Celii, F. G.

F. G. Celii, P. E. Pehrsson, H. C. Wang, J. E. Butler, “Infrared detection of gaseous species during the filament-assisted growth of diamond,” Appl. Phys. Lett. 52, 2043–2045 (1988).
[CrossRef]

Cho, A. Y.

Collot, P.

C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, U. Oesterle, “GaAs/AlxGa1–xAs quantum cascade lasers,” Appl. Phys. Lett. 73, 3486–3488 (1998).
[CrossRef]

Croitoru, N.

N. Croitoru, A. Inberg, R. Dahan, M. David, “Scattering and beam profile measurements of plastic, silica, and metal radiation waveguides,” J. Biomed. Opt. 2, 235–242 (1997).
[CrossRef] [PubMed]

R. Dahan, J. Dror, A. Inberg, N. Croitoru, “Scattering of IR and visible radiation from hollow waveguides,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 115–119 (1995).
[CrossRef]

Dahan, R.

N. Croitoru, A. Inberg, R. Dahan, M. David, “Scattering and beam profile measurements of plastic, silica, and metal radiation waveguides,” J. Biomed. Opt. 2, 235–242 (1997).
[CrossRef] [PubMed]

R. Dahan, J. Dror, A. Inberg, N. Croitoru, “Scattering of IR and visible radiation from hollow waveguides,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 115–119 (1995).
[CrossRef]

David, M.

N. Croitoru, A. Inberg, R. Dahan, M. David, “Scattering and beam profile measurements of plastic, silica, and metal radiation waveguides,” J. Biomed. Opt. 2, 235–242 (1997).
[CrossRef] [PubMed]

Davies, P. B.

P. B. Davies, P. M. Martineau, “Infrared diode laser diagnostics of methane plasmas produced in a deposition reactor,” Appl. Phys. Lett. 57, 237–239 (1990).
[CrossRef]

Davis, C. C.

C. C. Davis, “Trace detection in gases using phase fluctuation optical heterodyne spectroscopy,” Appl. Phys. Lett. 36, 515–518 (1980).
[CrossRef]

Dror, J.

R. Dahan, J. Dror, A. Inberg, N. Croitoru, “Scattering of IR and visible radiation from hollow waveguides,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 115–119 (1995).
[CrossRef]

Evenson, K. M.

K. M. Evenson, D. A. Jennings, F. R. Petersen, “Tunable far-infrared spectroscopy,” Appl. Phys. Lett. 44, 576–578 (1984).
[CrossRef]

Faist, J.

C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, U. Oesterle, “GaAs/AlxGa1–xAs quantum cascade lasers,” Appl. Phys. Lett. 73, 3486–3488 (1998).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Fayt, A.

E. Rusinek, H. Fichoux, M. Khelkhal, F. Herlemont, J. Legrand, A. Fayt, “Sub-Doppler study of the 7 band of C2H4 with a CO2 laser sideband spectrometer,” J. Mol. Spectrosc. 189, 64–73 (1998).
[CrossRef] [PubMed]

Fichoux, H.

E. Rusinek, H. Fichoux, M. Khelkhal, F. Herlemont, J. Legrand, A. Fayt, “Sub-Doppler study of the 7 band of C2H4 with a CO2 laser sideband spectrometer,” J. Mol. Spectrosc. 189, 64–73 (1998).
[CrossRef] [PubMed]

Frye, J. M.

P. Magerl, J. M. Frye, W. A. Kreiner, T. Oka, “Inverse Lamb dip spectroscopy using microwave modulation sidebands of CO2 laser lines,” Appl. Phys. Lett. 42, 656–658 (1983).
[CrossRef]

Gallen, N.

C. Worrell, N. Gallen, “Trace-level detection of gases with mid-infra-red hollow waveguides,” J. Phys. D 30, 1984–1995 (1997).
[CrossRef]

Gauthier-Lafaye, O.

O. Gauthier-Lafaye, S. Sauvage, P. Boucaud, F. H. Julien, R. Prazeres, F. Glotin, J.-M. Ortega, V. Thierry-Mieg, R. Planel, J.-P. Leburton, V. Berger, “Intersubband stimulated emission in GaAs/AlGaAs quantum wells: pump–probe experiments using a two-color free-electron laser,” Appl. Phys. Lett. 70, 3197–3199 (1997).
[CrossRef]

Gianordoli, S.

G. Strasser, S. Gianordoli, L. Hvozdara, W. Schrenk, K. Unterrainer, E. Gornik, “GaAs/AlGaAs superlattice quantum cascade lasers at 13 µm,” Appl. Phys. Lett. 75, 1345–1348 (1999).
[CrossRef]

Glotin, F.

O. Gauthier-Lafaye, S. Sauvage, P. Boucaud, F. H. Julien, R. Prazeres, F. Glotin, J.-M. Ortega, V. Thierry-Mieg, R. Planel, J.-P. Leburton, V. Berger, “Intersubband stimulated emission in GaAs/AlGaAs quantum wells: pump–probe experiments using a two-color free-electron laser,” Appl. Phys. Lett. 70, 3197–3199 (1997).
[CrossRef]

Gmachl, C.

Gornik, E.

G. Strasser, S. Gianordoli, L. Hvozdara, W. Schrenk, K. Unterrainer, E. Gornik, “GaAs/AlGaAs superlattice quantum cascade lasers at 13 µm,” Appl. Phys. Lett. 75, 1345–1348 (1999).
[CrossRef]

Gough, T. E.

T. E. Gough, R. E. Miller, G. Scoles, “Infrared laser spectroscopy of molecular beams,” Appl. Phys. Lett. 30, 338–340 (1977).
[CrossRef]

Harrington, J.

J. Harrington, Y. Matsuura, “Review of hollow waveguide technology,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 4–14 (1995).
[CrossRef]

Hartman, J. S.

Herlemont, F.

E. Rusinek, H. Fichoux, M. Khelkhal, F. Herlemont, J. Legrand, A. Fayt, “Sub-Doppler study of the 7 band of C2H4 with a CO2 laser sideband spectrometer,” J. Mol. Spectrosc. 189, 64–73 (1998).
[CrossRef] [PubMed]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Hvozdara, L.

G. Strasser, S. Gianordoli, L. Hvozdara, W. Schrenk, K. Unterrainer, E. Gornik, “GaAs/AlGaAs superlattice quantum cascade lasers at 13 µm,” Appl. Phys. Lett. 75, 1345–1348 (1999).
[CrossRef]

Inberg, A.

N. Croitoru, A. Inberg, R. Dahan, M. David, “Scattering and beam profile measurements of plastic, silica, and metal radiation waveguides,” J. Biomed. Opt. 2, 235–242 (1997).
[CrossRef] [PubMed]

R. Dahan, J. Dror, A. Inberg, N. Croitoru, “Scattering of IR and visible radiation from hollow waveguides,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 115–119 (1995).
[CrossRef]

Jalink, H.

H. Jalink, D. Bicanic, “Concept, design, and use of the photoacoustic heat pipe cell,” Appl. Phys. Lett. 55, 1507–1509 (1989).
[CrossRef]

Jennings, D. A.

K. M. Evenson, D. A. Jennings, F. R. Petersen, “Tunable far-infrared spectroscopy,” Appl. Phys. Lett. 44, 576–578 (1984).
[CrossRef]

Julien, F. H.

O. Gauthier-Lafaye, S. Sauvage, P. Boucaud, F. H. Julien, R. Prazeres, F. Glotin, J.-M. Ortega, V. Thierry-Mieg, R. Planel, J.-P. Leburton, V. Berger, “Intersubband stimulated emission in GaAs/AlGaAs quantum wells: pump–probe experiments using a two-color free-electron laser,” Appl. Phys. Lett. 70, 3197–3199 (1997).
[CrossRef]

Katzir, A.

S. Simhony, A. Katzir, “Remote monitoring of ammonia using a CO2 laser and infrared fibers,” Appl. Phys. Lett. 47, 1241–1243 (1985).
[CrossRef]

Kelly, J. F.

Khelkhal, M.

E. Rusinek, H. Fichoux, M. Khelkhal, F. Herlemont, J. Legrand, A. Fayt, “Sub-Doppler study of the 7 band of C2H4 with a CO2 laser sideband spectrometer,” J. Mol. Spectrosc. 189, 64–73 (1998).
[CrossRef] [PubMed]

Kreiner, W. A.

P. Magerl, J. M. Frye, W. A. Kreiner, T. Oka, “Inverse Lamb dip spectroscopy using microwave modulation sidebands of CO2 laser lines,” Appl. Phys. Lett. 42, 656–658 (1983).
[CrossRef]

Kroll, M.

M. Kroll, J. A. McClintock, O. Ollinger, “Measurement of gaseous oxygen using diode laser spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
[CrossRef]

Kruck, P.

C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, U. Oesterle, “GaAs/AlxGa1–xAs quantum cascade lasers,” Appl. Phys. Lett. 73, 3486–3488 (1998).
[CrossRef]

Lambrecht, A.

B. Spanger, U. Schiessl, A. Lambrecht, H. Böttner, M. Tacke, “Near-room-temperature operation of Pb1–xSrxSe infrared diode lasers using molecular beam epitaxy growth techniques,” Appl. Phys. Lett. 53, 2582–2583 (1988).
[CrossRef]

Leburton, J.-P.

O. Gauthier-Lafaye, S. Sauvage, P. Boucaud, F. H. Julien, R. Prazeres, F. Glotin, J.-M. Ortega, V. Thierry-Mieg, R. Planel, J.-P. Leburton, V. Berger, “Intersubband stimulated emission in GaAs/AlGaAs quantum wells: pump–probe experiments using a two-color free-electron laser,” Appl. Phys. Lett. 70, 3197–3199 (1997).
[CrossRef]

Legrand, J.

E. Rusinek, H. Fichoux, M. Khelkhal, F. Herlemont, J. Legrand, A. Fayt, “Sub-Doppler study of the 7 band of C2H4 with a CO2 laser sideband spectrometer,” J. Mol. Spectrosc. 189, 64–73 (1998).
[CrossRef] [PubMed]

Magerl, P.

P. Magerl, J. M. Frye, W. A. Kreiner, T. Oka, “Inverse Lamb dip spectroscopy using microwave modulation sidebands of CO2 laser lines,” Appl. Phys. Lett. 42, 656–658 (1983).
[CrossRef]

Martineau, P. M.

P. B. Davies, P. M. Martineau, “Infrared diode laser diagnostics of methane plasmas produced in a deposition reactor,” Appl. Phys. Lett. 57, 237–239 (1990).
[CrossRef]

Matsuura, Y.

J. Harrington, Y. Matsuura, “Review of hollow waveguide technology,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 4–14 (1995).
[CrossRef]

McClintock, J. A.

M. Kroll, J. A. McClintock, O. Ollinger, “Measurement of gaseous oxygen using diode laser spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
[CrossRef]

Miller, R. E.

T. E. Gough, R. E. Miller, G. Scoles, “Infrared laser spectroscopy of molecular beams,” Appl. Phys. Lett. 30, 338–340 (1977).
[CrossRef]

Nagle, J.

C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, U. Oesterle, “GaAs/AlxGa1–xAs quantum cascade lasers,” Appl. Phys. Lett. 73, 3486–3488 (1998).
[CrossRef]

Oesterle, U.

C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, U. Oesterle, “GaAs/AlxGa1–xAs quantum cascade lasers,” Appl. Phys. Lett. 73, 3486–3488 (1998).
[CrossRef]

Oka, T.

P. Magerl, J. M. Frye, W. A. Kreiner, T. Oka, “Inverse Lamb dip spectroscopy using microwave modulation sidebands of CO2 laser lines,” Appl. Phys. Lett. 42, 656–658 (1983).
[CrossRef]

Ollinger, O.

M. Kroll, J. A. McClintock, O. Ollinger, “Measurement of gaseous oxygen using diode laser spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
[CrossRef]

Ortega, J.-M.

O. Gauthier-Lafaye, S. Sauvage, P. Boucaud, F. H. Julien, R. Prazeres, F. Glotin, J.-M. Ortega, V. Thierry-Mieg, R. Planel, J.-P. Leburton, V. Berger, “Intersubband stimulated emission in GaAs/AlGaAs quantum wells: pump–probe experiments using a two-color free-electron laser,” Appl. Phys. Lett. 70, 3197–3199 (1997).
[CrossRef]

Pehrsson, P. E.

F. G. Celii, P. E. Pehrsson, H. C. Wang, J. E. Butler, “Infrared detection of gaseous species during the filament-assisted growth of diamond,” Appl. Phys. Lett. 52, 2043–2045 (1988).
[CrossRef]

Petersen, F. R.

K. M. Evenson, D. A. Jennings, F. R. Petersen, “Tunable far-infrared spectroscopy,” Appl. Phys. Lett. 44, 576–578 (1984).
[CrossRef]

Planel, R.

O. Gauthier-Lafaye, S. Sauvage, P. Boucaud, F. H. Julien, R. Prazeres, F. Glotin, J.-M. Ortega, V. Thierry-Mieg, R. Planel, J.-P. Leburton, V. Berger, “Intersubband stimulated emission in GaAs/AlGaAs quantum wells: pump–probe experiments using a two-color free-electron laser,” Appl. Phys. Lett. 70, 3197–3199 (1997).
[CrossRef]

Prazeres, R.

O. Gauthier-Lafaye, S. Sauvage, P. Boucaud, F. H. Julien, R. Prazeres, F. Glotin, J.-M. Ortega, V. Thierry-Mieg, R. Planel, J.-P. Leburton, V. Berger, “Intersubband stimulated emission in GaAs/AlGaAs quantum wells: pump–probe experiments using a two-color free-electron laser,” Appl. Phys. Lett. 70, 3197–3199 (1997).
[CrossRef]

Rusinek, E.

E. Rusinek, H. Fichoux, M. Khelkhal, F. Herlemont, J. Legrand, A. Fayt, “Sub-Doppler study of the 7 band of C2H4 with a CO2 laser sideband spectrometer,” J. Mol. Spectrosc. 189, 64–73 (1998).
[CrossRef] [PubMed]

Sauvage, S.

O. Gauthier-Lafaye, S. Sauvage, P. Boucaud, F. H. Julien, R. Prazeres, F. Glotin, J.-M. Ortega, V. Thierry-Mieg, R. Planel, J.-P. Leburton, V. Berger, “Intersubband stimulated emission in GaAs/AlGaAs quantum wells: pump–probe experiments using a two-color free-electron laser,” Appl. Phys. Lett. 70, 3197–3199 (1997).
[CrossRef]

Schiessl, U.

B. Spanger, U. Schiessl, A. Lambrecht, H. Böttner, M. Tacke, “Near-room-temperature operation of Pb1–xSrxSe infrared diode lasers using molecular beam epitaxy growth techniques,” Appl. Phys. Lett. 53, 2582–2583 (1988).
[CrossRef]

Schrenk, W.

G. Strasser, S. Gianordoli, L. Hvozdara, W. Schrenk, K. Unterrainer, E. Gornik, “GaAs/AlGaAs superlattice quantum cascade lasers at 13 µm,” Appl. Phys. Lett. 75, 1345–1348 (1999).
[CrossRef]

Scoles, G.

T. E. Gough, R. E. Miller, G. Scoles, “Infrared laser spectroscopy of molecular beams,” Appl. Phys. Lett. 30, 338–340 (1977).
[CrossRef]

Sharpe, S. W.

Simhony, S.

S. Simhony, A. Katzir, “Remote monitoring of ammonia using a CO2 laser and infrared fibers,” Appl. Phys. Lett. 47, 1241–1243 (1985).
[CrossRef]

Sirtori, C.

C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, U. Oesterle, “GaAs/AlxGa1–xAs quantum cascade lasers,” Appl. Phys. Lett. 73, 3486–3488 (1998).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Sivco, D. L.

Spanger, B.

B. Spanger, U. Schiessl, A. Lambrecht, H. Böttner, M. Tacke, “Near-room-temperature operation of Pb1–xSrxSe infrared diode lasers using molecular beam epitaxy growth techniques,” Appl. Phys. Lett. 53, 2582–2583 (1988).
[CrossRef]

Strasser, G.

G. Strasser, S. Gianordoli, L. Hvozdara, W. Schrenk, K. Unterrainer, E. Gornik, “GaAs/AlGaAs superlattice quantum cascade lasers at 13 µm,” Appl. Phys. Lett. 75, 1345–1348 (1999).
[CrossRef]

Tacke, M.

B. Spanger, U. Schiessl, A. Lambrecht, H. Böttner, M. Tacke, “Near-room-temperature operation of Pb1–xSrxSe infrared diode lasers using molecular beam epitaxy growth techniques,” Appl. Phys. Lett. 53, 2582–2583 (1988).
[CrossRef]

Taubenblatt, M. A.

M. A. Taubenblatt, “Photothermal absorption microprobe: infrared spectroscopy of a single 1 µm organic particle,” Appl. Phys. Lett. 52, 951–953 (1988).
[CrossRef]

Thierry-Mieg, V.

O. Gauthier-Lafaye, S. Sauvage, P. Boucaud, F. H. Julien, R. Prazeres, F. Glotin, J.-M. Ortega, V. Thierry-Mieg, R. Planel, J.-P. Leburton, V. Berger, “Intersubband stimulated emission in GaAs/AlGaAs quantum wells: pump–probe experiments using a two-color free-electron laser,” Appl. Phys. Lett. 70, 3197–3199 (1997).
[CrossRef]

Unterrainer, K.

G. Strasser, S. Gianordoli, L. Hvozdara, W. Schrenk, K. Unterrainer, E. Gornik, “GaAs/AlGaAs superlattice quantum cascade lasers at 13 µm,” Appl. Phys. Lett. 75, 1345–1348 (1999).
[CrossRef]

Wang, H. C.

F. G. Celii, P. E. Pehrsson, H. C. Wang, J. E. Butler, “Infrared detection of gaseous species during the filament-assisted growth of diamond,” Appl. Phys. Lett. 52, 2043–2045 (1988).
[CrossRef]

Worrell, C.

C. Worrell, N. Gallen, “Trace-level detection of gases with mid-infra-red hollow waveguides,” J. Phys. D 30, 1984–1995 (1997).
[CrossRef]

Appl. Phys. Lett. (14)

P. B. Davies, P. M. Martineau, “Infrared diode laser diagnostics of methane plasmas produced in a deposition reactor,” Appl. Phys. Lett. 57, 237–239 (1990).
[CrossRef]

M. Kroll, J. A. McClintock, O. Ollinger, “Measurement of gaseous oxygen using diode laser spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
[CrossRef]

T. E. Gough, R. E. Miller, G. Scoles, “Infrared laser spectroscopy of molecular beams,” Appl. Phys. Lett. 30, 338–340 (1977).
[CrossRef]

F. G. Celii, P. E. Pehrsson, H. C. Wang, J. E. Butler, “Infrared detection of gaseous species during the filament-assisted growth of diamond,” Appl. Phys. Lett. 52, 2043–2045 (1988).
[CrossRef]

H. Jalink, D. Bicanic, “Concept, design, and use of the photoacoustic heat pipe cell,” Appl. Phys. Lett. 55, 1507–1509 (1989).
[CrossRef]

M. A. Taubenblatt, “Photothermal absorption microprobe: infrared spectroscopy of a single 1 µm organic particle,” Appl. Phys. Lett. 52, 951–953 (1988).
[CrossRef]

S. Simhony, A. Katzir, “Remote monitoring of ammonia using a CO2 laser and infrared fibers,” Appl. Phys. Lett. 47, 1241–1243 (1985).
[CrossRef]

K. M. Evenson, D. A. Jennings, F. R. Petersen, “Tunable far-infrared spectroscopy,” Appl. Phys. Lett. 44, 576–578 (1984).
[CrossRef]

P. Magerl, J. M. Frye, W. A. Kreiner, T. Oka, “Inverse Lamb dip spectroscopy using microwave modulation sidebands of CO2 laser lines,” Appl. Phys. Lett. 42, 656–658 (1983).
[CrossRef]

C. C. Davis, “Trace detection in gases using phase fluctuation optical heterodyne spectroscopy,” Appl. Phys. Lett. 36, 515–518 (1980).
[CrossRef]

B. Spanger, U. Schiessl, A. Lambrecht, H. Böttner, M. Tacke, “Near-room-temperature operation of Pb1–xSrxSe infrared diode lasers using molecular beam epitaxy growth techniques,” Appl. Phys. Lett. 53, 2582–2583 (1988).
[CrossRef]

O. Gauthier-Lafaye, S. Sauvage, P. Boucaud, F. H. Julien, R. Prazeres, F. Glotin, J.-M. Ortega, V. Thierry-Mieg, R. Planel, J.-P. Leburton, V. Berger, “Intersubband stimulated emission in GaAs/AlGaAs quantum wells: pump–probe experiments using a two-color free-electron laser,” Appl. Phys. Lett. 70, 3197–3199 (1997).
[CrossRef]

C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, U. Oesterle, “GaAs/AlxGa1–xAs quantum cascade lasers,” Appl. Phys. Lett. 73, 3486–3488 (1998).
[CrossRef]

G. Strasser, S. Gianordoli, L. Hvozdara, W. Schrenk, K. Unterrainer, E. Gornik, “GaAs/AlGaAs superlattice quantum cascade lasers at 13 µm,” Appl. Phys. Lett. 75, 1345–1348 (1999).
[CrossRef]

J. Biomed. Opt. (1)

N. Croitoru, A. Inberg, R. Dahan, M. David, “Scattering and beam profile measurements of plastic, silica, and metal radiation waveguides,” J. Biomed. Opt. 2, 235–242 (1997).
[CrossRef] [PubMed]

J. Mol. Spectrosc. (1)

E. Rusinek, H. Fichoux, M. Khelkhal, F. Herlemont, J. Legrand, A. Fayt, “Sub-Doppler study of the 7 band of C2H4 with a CO2 laser sideband spectrometer,” J. Mol. Spectrosc. 189, 64–73 (1998).
[CrossRef] [PubMed]

J. Phys. D (1)

C. Worrell, N. Gallen, “Trace-level detection of gases with mid-infra-red hollow waveguides,” J. Phys. D 30, 1984–1995 (1997).
[CrossRef]

Opt. Lett. (1)

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Other (2)

J. Harrington, Y. Matsuura, “Review of hollow waveguide technology,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 4–14 (1995).
[CrossRef]

R. Dahan, J. Dror, A. Inberg, N. Croitoru, “Scattering of IR and visible radiation from hollow waveguides,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 115–119 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

High resolution (0.125-cm-1) emission spectra of a 1.15-mm-long, 22.6-µm-wide ridge QCL, recorded at different temperatures in the 40–72-K range, showing the temperature tunability of the laser. The observed linewidth of the longitudinal QCL modes (0.125 cm-1) is resolution limited. The operating conditions are a current density of j = 18 kA/cm2, a repetition rate of f = 5 kHz, and a duty cycle of 0.05%. We selected the operating temperature of 62 K for the absorption experiment with ethene. (The temperature points are not equally spaced).

Fig. 2
Fig. 2

Emission spectrum of the QCL recorded at 62 K with the dominant mode at 999.08 cm-1 (lower curve) and the calculated transmission spectrum of ethene based on theoretical values (upper curve). The absorption of two marked modes—999.09 and 997.79 cm-1—is shown in detail in Fig. 4.

Fig. 3
Fig. 3

Experimental setup. The QCL is mounted in the He-cooled continuous-flow cryostat. The emitted light passes through the hollow waveguide absorption cell and enters the FTIR spectrometer for detection and spectral analysis. The time response is in the area of 100 ms, owing to the small volume of the cell.

Fig. 4
Fig. 4

Comparison of the absorption at two laser modes: 997.8 and 999.09 cm-1. Spectra were recorded for different ethene concentrations: a, 29 918 ppm; b, 21 000 ppm; c, 16 481 ppm; d, 13 064 ppm; e, 9 622 ppm; f, 7 314 ppm; g, 4 763 ppm; h, 3 133 ppm; i, 1438 ppm; j, pure helium (0 ppm). Spectra are scaled in such a way that the curves that correspond to the lowest absorption (j) have the same height for both modes. Other curves are scaled proportionally. The 999.09-cm-1 mode exhibits significantly stronger absorption compared with that from the 997.8-cm-1 mode.

Fig. 5
Fig. 5

Transmittance as a function of concentration for five emission modes: (a) 995.19 cm-1, (b) 997.8 cm-1, (c) 999.08 cm-1, (d) 1000.42 cm-1, (e) 1003.043 cm-1. Filled circles represent the measured data whereas the lines represent the exponential fits. The exponents γ m and γ m ref used for comparison in Table 1 result from these fits.

Fig. 6
Fig. 6

Transmittance as a function of the concentration at 999.08 cm-1. The error bars indicate the standard deviation of the measured signal. The inset showing the low-concentration region implies that the detection limit of the setup is around 250 ppm.

Fig. 7
Fig. 7

Calculated ethene spectrum (upper curve) shown in the range that includes the dominant absorption at 949.2 cm-1, which is approximately twelve times stronger than the absorption at 999.08 cm-1. This implies that the detection limit of the setup is 20 ppm if a laser with similar performance that emits at 949.2 cm-1 were designed. The lower curve indicates the emission spectrum of the laser used in our experiment.

Tables (1)

Tables Icon

Table 1 Comparison of Experimental and Calculated Extinctions for All Seven Modesa

Metrics