Abstract

The emission of high-power broad-area semiconductor lasers inherently contains many lateral modes that increase the beam divergence and reduce the spatial coherence. Elimination of higher-order lateral modes from the output beams of commercially available broad-area lasers will be beneficial in many applications of these lasers. Experimental results obtained with a broad-area laser coupled to an anamorphic external cavity are presented and are compared with the predictions from our numerical model. We have predicted and observed with the anamorphic external cavity a greatly improved discrimination against high-order lateral modes. The measurement of the spectrally resolved near-field intensity patterns provides much more comprehensive information on their longitudinal- and lateral-mode content than do observations of near-field and far-field beam intensity profiles. With a broad-area laser of 100-mW nominal power, it has been possible to extract 40% of the maximal power in a stable single-lateral and single-longitudinal mode regime.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. M. Philipp-Rutz, “Spatially coherent radiation from an array of GaAs lasers,” Appl. Phys. Lett. 26, 475–477 (1975).
    [CrossRef]
  2. R. H. Rediker, R. P. Schloss, L. J. Van Ruyven, “Operation of individual diode lasers as a coherent ensemble controlled by a spatial filter within an external cavity,” Appl. Phys. Lett. 46, 133–135 (1985).
    [CrossRef]
  3. J. Yaeli, W. Streifer, D. R. Scifres, P. S. Cross, R. L. Thornton, R. D. Burnham, “Array mode selection utilizing an external cavity configuration,” Appl. Phys. Lett. 47, 89–91 (1985).
    [CrossRef]
  4. J. Berger, D. F. Welch, W. Streifer, D. R. Scifres, “Narrowing the far field of a Y-junction laser array using a customized spatial filter in an external cavity,” Appl. Phys. Lett. 52, 1560–1562 (1988).
    [CrossRef]
  5. V. Diadiuk, Z. L. Liau, J. N. Walpole, J. W. Caunt, R. C. Williamson, “External-cavity coherent operation of InGaAsP buried-heterostructure laser array,” Appl. Phys. Lett. 55, 2161–2163 (1989).
    [CrossRef]
  6. J. R. Andrews, T. L. Paoli, W. Streifer, R. D. Burnham, “Individual spatial modes of a phase-locked injection laser array observed through spectral selection and selected with an external mirror,” J. Appl. Phys. 58, 2777–2779 (1985).
    [CrossRef]
  7. A. Barthelemy, F. Louradour, V. Couderc, “Wavelength-tunable diffraction-limited operation of a standard high-power diode-laser array using an off-centred extended cavity,” Electron. Lett. 28, 2038–2040 (1992).
    [CrossRef]
  8. L. Goldberg, J. F. Weller, “Single lobe operation of a 40-element laser array in an external ring laser cavity,” Appl. Phys. Lett. 51, 871–873 (1987).
    [CrossRef]
  9. C. Chang-Hasnain, D. F. Welch, D. R. Scifres, J. R. Whinnery, A. Dienes, R. D. Burnham, “Diffraction-limited emission from a diode laser array in an apertured graded-index lens external cavity,” Appl. Phys. Lett. 49, 614–616 (1986).
    [CrossRef]
  10. C. J. Chang-Hasnain, J. Berger, D. R. Scifres, W. Streifer, J. R. Whinnery, A. Dienes, “High power with high efficiency in a narrow single-lobed beam from a diode laser array in an external cavity,” Appl. Phys. Lett. 50, 1465–1467 (1987).
    [CrossRef]
  11. J. R. Leger, G. Mowry, “External diode-laser-array cavity with mode-selecting mirror,” Appl. Phys. Lett. 63, 2884–2886 (1993).
    [CrossRef]
  12. L. Goldberg, J. F. Weller, “Narrow lobe emission of high power broad stripe laser in external resonator cavity,” Electron. Lett. 25, 112–114 (1989).
    [CrossRef]
  13. S. Mailhot, G. Rousseau, N. McCarthy, “Improvement of lateral-mode discrimination of wide stripe semiconductor lasers by using a profiled reflectivity external mirror,” in Proceedings of the International Conference on Lasers ’94 (Society for Quantum Electronics, McLean, Va., 1994), pp. 284–288.
  14. J.-F. Lepage, R. Massudi, G. Anctil, S. Gilbert, M. Piché, N. McCarthy, “Apodizing holographic gratings for the modal control of semiconductor lasers,” Appl. Opt. 36, 4993–4998 (1997).
    [CrossRef] [PubMed]
  15. J.-F. Lepage, N. McCarthy, “Apodizing holographic gratings for dual-wavelength operation of broad-area semiconductor lasers,” Appl. Opt. 37, 8420–8425 (1998).
    [CrossRef]
  16. M. A. Hadley, G. C. Wilson, K. Y. Lau, J. S. Smith, “High single-transverse-mode output from external-cavity surface-emitting laser diodes,” Appl. Phys. Lett. 63, 1607–1609 (1993).
    [CrossRef]
  17. J. Dellunde, A. Valle, K. A. Shore, “Transverse-mode selection in external-cavity vertical-cavity surface-emitting laser diodes,” J. Opt. Soc. Am. B 13, 2477–2483 (1996).
    [CrossRef]
  18. J. A. Ruff, A. E. Siegman, S. C. Wang, “Mode characteristics of broad area high power diode lasers in an external stable-unstable cavity,” in Conference on Lasers and Electro-Optics, Vol. 11 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), pp. 296–297.
  19. W. F. Sharfin, J. Seppala, A. Mooradian, B. A. Soltz, R. G. Waters, B. J. Vollmer, K. J. Bystrom, “High-power, diffraction-limited, narrow-band, external-cavity diode laser,” Appl. Phys. Lett. 54, 1731–1733 (1989).
    [CrossRef]
  20. B. W. Hakki, T. L. Paoli, “Gain spectra in GaAs double-heterostructure injection lasers,” J. Appl. Phys. 46, 1299–1306 (1975).
    [CrossRef]
  21. G. P. Agrawal, “Fast-Fourier-transform based beam propagation model for stripe-geometry semiconductor lasers: inclusion of axial effects,” J. Appl. Phys. 56, 3100–3109 (1984).
    [CrossRef]
  22. A. G. Fox, T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961).
    [CrossRef]
  23. A. E. Siegman, H. Y. Miller, “Unstable optical resonator loss calculations using the Prony method,” Appl. Opt. 9, 2729–2736 (1970).
    [CrossRef] [PubMed]
  24. Y. Champagne, S. Mailhot, N. McCarthy, “Numerical procedure for the lateral-mode analysis of broad area semiconductor lasers with an external cavity,” IEEE J. Quantum Electron. 31, 795–810 (1995).
    [CrossRef]
  25. A. E. Siegman, Lasers, (University Science, Mill Valley, Calif., 1986), pp. 805–811.

1998

1997

1996

1995

Y. Champagne, S. Mailhot, N. McCarthy, “Numerical procedure for the lateral-mode analysis of broad area semiconductor lasers with an external cavity,” IEEE J. Quantum Electron. 31, 795–810 (1995).
[CrossRef]

1993

J. R. Leger, G. Mowry, “External diode-laser-array cavity with mode-selecting mirror,” Appl. Phys. Lett. 63, 2884–2886 (1993).
[CrossRef]

M. A. Hadley, G. C. Wilson, K. Y. Lau, J. S. Smith, “High single-transverse-mode output from external-cavity surface-emitting laser diodes,” Appl. Phys. Lett. 63, 1607–1609 (1993).
[CrossRef]

1992

A. Barthelemy, F. Louradour, V. Couderc, “Wavelength-tunable diffraction-limited operation of a standard high-power diode-laser array using an off-centred extended cavity,” Electron. Lett. 28, 2038–2040 (1992).
[CrossRef]

1989

V. Diadiuk, Z. L. Liau, J. N. Walpole, J. W. Caunt, R. C. Williamson, “External-cavity coherent operation of InGaAsP buried-heterostructure laser array,” Appl. Phys. Lett. 55, 2161–2163 (1989).
[CrossRef]

L. Goldberg, J. F. Weller, “Narrow lobe emission of high power broad stripe laser in external resonator cavity,” Electron. Lett. 25, 112–114 (1989).
[CrossRef]

W. F. Sharfin, J. Seppala, A. Mooradian, B. A. Soltz, R. G. Waters, B. J. Vollmer, K. J. Bystrom, “High-power, diffraction-limited, narrow-band, external-cavity diode laser,” Appl. Phys. Lett. 54, 1731–1733 (1989).
[CrossRef]

1988

J. Berger, D. F. Welch, W. Streifer, D. R. Scifres, “Narrowing the far field of a Y-junction laser array using a customized spatial filter in an external cavity,” Appl. Phys. Lett. 52, 1560–1562 (1988).
[CrossRef]

1987

L. Goldberg, J. F. Weller, “Single lobe operation of a 40-element laser array in an external ring laser cavity,” Appl. Phys. Lett. 51, 871–873 (1987).
[CrossRef]

C. J. Chang-Hasnain, J. Berger, D. R. Scifres, W. Streifer, J. R. Whinnery, A. Dienes, “High power with high efficiency in a narrow single-lobed beam from a diode laser array in an external cavity,” Appl. Phys. Lett. 50, 1465–1467 (1987).
[CrossRef]

1986

C. Chang-Hasnain, D. F. Welch, D. R. Scifres, J. R. Whinnery, A. Dienes, R. D. Burnham, “Diffraction-limited emission from a diode laser array in an apertured graded-index lens external cavity,” Appl. Phys. Lett. 49, 614–616 (1986).
[CrossRef]

1985

J. R. Andrews, T. L. Paoli, W. Streifer, R. D. Burnham, “Individual spatial modes of a phase-locked injection laser array observed through spectral selection and selected with an external mirror,” J. Appl. Phys. 58, 2777–2779 (1985).
[CrossRef]

R. H. Rediker, R. P. Schloss, L. J. Van Ruyven, “Operation of individual diode lasers as a coherent ensemble controlled by a spatial filter within an external cavity,” Appl. Phys. Lett. 46, 133–135 (1985).
[CrossRef]

J. Yaeli, W. Streifer, D. R. Scifres, P. S. Cross, R. L. Thornton, R. D. Burnham, “Array mode selection utilizing an external cavity configuration,” Appl. Phys. Lett. 47, 89–91 (1985).
[CrossRef]

1984

G. P. Agrawal, “Fast-Fourier-transform based beam propagation model for stripe-geometry semiconductor lasers: inclusion of axial effects,” J. Appl. Phys. 56, 3100–3109 (1984).
[CrossRef]

1975

B. W. Hakki, T. L. Paoli, “Gain spectra in GaAs double-heterostructure injection lasers,” J. Appl. Phys. 46, 1299–1306 (1975).
[CrossRef]

E. M. Philipp-Rutz, “Spatially coherent radiation from an array of GaAs lasers,” Appl. Phys. Lett. 26, 475–477 (1975).
[CrossRef]

1970

1961

A. G. Fox, T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, “Fast-Fourier-transform based beam propagation model for stripe-geometry semiconductor lasers: inclusion of axial effects,” J. Appl. Phys. 56, 3100–3109 (1984).
[CrossRef]

Anctil, G.

Andrews, J. R.

J. R. Andrews, T. L. Paoli, W. Streifer, R. D. Burnham, “Individual spatial modes of a phase-locked injection laser array observed through spectral selection and selected with an external mirror,” J. Appl. Phys. 58, 2777–2779 (1985).
[CrossRef]

Barthelemy, A.

A. Barthelemy, F. Louradour, V. Couderc, “Wavelength-tunable diffraction-limited operation of a standard high-power diode-laser array using an off-centred extended cavity,” Electron. Lett. 28, 2038–2040 (1992).
[CrossRef]

Berger, J.

J. Berger, D. F. Welch, W. Streifer, D. R. Scifres, “Narrowing the far field of a Y-junction laser array using a customized spatial filter in an external cavity,” Appl. Phys. Lett. 52, 1560–1562 (1988).
[CrossRef]

C. J. Chang-Hasnain, J. Berger, D. R. Scifres, W. Streifer, J. R. Whinnery, A. Dienes, “High power with high efficiency in a narrow single-lobed beam from a diode laser array in an external cavity,” Appl. Phys. Lett. 50, 1465–1467 (1987).
[CrossRef]

Burnham, R. D.

C. Chang-Hasnain, D. F. Welch, D. R. Scifres, J. R. Whinnery, A. Dienes, R. D. Burnham, “Diffraction-limited emission from a diode laser array in an apertured graded-index lens external cavity,” Appl. Phys. Lett. 49, 614–616 (1986).
[CrossRef]

J. R. Andrews, T. L. Paoli, W. Streifer, R. D. Burnham, “Individual spatial modes of a phase-locked injection laser array observed through spectral selection and selected with an external mirror,” J. Appl. Phys. 58, 2777–2779 (1985).
[CrossRef]

J. Yaeli, W. Streifer, D. R. Scifres, P. S. Cross, R. L. Thornton, R. D. Burnham, “Array mode selection utilizing an external cavity configuration,” Appl. Phys. Lett. 47, 89–91 (1985).
[CrossRef]

Bystrom, K. J.

W. F. Sharfin, J. Seppala, A. Mooradian, B. A. Soltz, R. G. Waters, B. J. Vollmer, K. J. Bystrom, “High-power, diffraction-limited, narrow-band, external-cavity diode laser,” Appl. Phys. Lett. 54, 1731–1733 (1989).
[CrossRef]

Caunt, J. W.

V. Diadiuk, Z. L. Liau, J. N. Walpole, J. W. Caunt, R. C. Williamson, “External-cavity coherent operation of InGaAsP buried-heterostructure laser array,” Appl. Phys. Lett. 55, 2161–2163 (1989).
[CrossRef]

Champagne, Y.

Y. Champagne, S. Mailhot, N. McCarthy, “Numerical procedure for the lateral-mode analysis of broad area semiconductor lasers with an external cavity,” IEEE J. Quantum Electron. 31, 795–810 (1995).
[CrossRef]

Chang-Hasnain, C.

C. Chang-Hasnain, D. F. Welch, D. R. Scifres, J. R. Whinnery, A. Dienes, R. D. Burnham, “Diffraction-limited emission from a diode laser array in an apertured graded-index lens external cavity,” Appl. Phys. Lett. 49, 614–616 (1986).
[CrossRef]

Chang-Hasnain, C. J.

C. J. Chang-Hasnain, J. Berger, D. R. Scifres, W. Streifer, J. R. Whinnery, A. Dienes, “High power with high efficiency in a narrow single-lobed beam from a diode laser array in an external cavity,” Appl. Phys. Lett. 50, 1465–1467 (1987).
[CrossRef]

Couderc, V.

A. Barthelemy, F. Louradour, V. Couderc, “Wavelength-tunable diffraction-limited operation of a standard high-power diode-laser array using an off-centred extended cavity,” Electron. Lett. 28, 2038–2040 (1992).
[CrossRef]

Cross, P. S.

J. Yaeli, W. Streifer, D. R. Scifres, P. S. Cross, R. L. Thornton, R. D. Burnham, “Array mode selection utilizing an external cavity configuration,” Appl. Phys. Lett. 47, 89–91 (1985).
[CrossRef]

Dellunde, J.

Diadiuk, V.

V. Diadiuk, Z. L. Liau, J. N. Walpole, J. W. Caunt, R. C. Williamson, “External-cavity coherent operation of InGaAsP buried-heterostructure laser array,” Appl. Phys. Lett. 55, 2161–2163 (1989).
[CrossRef]

Dienes, A.

C. J. Chang-Hasnain, J. Berger, D. R. Scifres, W. Streifer, J. R. Whinnery, A. Dienes, “High power with high efficiency in a narrow single-lobed beam from a diode laser array in an external cavity,” Appl. Phys. Lett. 50, 1465–1467 (1987).
[CrossRef]

C. Chang-Hasnain, D. F. Welch, D. R. Scifres, J. R. Whinnery, A. Dienes, R. D. Burnham, “Diffraction-limited emission from a diode laser array in an apertured graded-index lens external cavity,” Appl. Phys. Lett. 49, 614–616 (1986).
[CrossRef]

Fox, A. G.

A. G. Fox, T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961).
[CrossRef]

Gilbert, S.

Goldberg, L.

L. Goldberg, J. F. Weller, “Narrow lobe emission of high power broad stripe laser in external resonator cavity,” Electron. Lett. 25, 112–114 (1989).
[CrossRef]

L. Goldberg, J. F. Weller, “Single lobe operation of a 40-element laser array in an external ring laser cavity,” Appl. Phys. Lett. 51, 871–873 (1987).
[CrossRef]

Hadley, M. A.

M. A. Hadley, G. C. Wilson, K. Y. Lau, J. S. Smith, “High single-transverse-mode output from external-cavity surface-emitting laser diodes,” Appl. Phys. Lett. 63, 1607–1609 (1993).
[CrossRef]

Hakki, B. W.

B. W. Hakki, T. L. Paoli, “Gain spectra in GaAs double-heterostructure injection lasers,” J. Appl. Phys. 46, 1299–1306 (1975).
[CrossRef]

Lau, K. Y.

M. A. Hadley, G. C. Wilson, K. Y. Lau, J. S. Smith, “High single-transverse-mode output from external-cavity surface-emitting laser diodes,” Appl. Phys. Lett. 63, 1607–1609 (1993).
[CrossRef]

Leger, J. R.

J. R. Leger, G. Mowry, “External diode-laser-array cavity with mode-selecting mirror,” Appl. Phys. Lett. 63, 2884–2886 (1993).
[CrossRef]

Lepage, J.-F.

Li, T.

A. G. Fox, T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961).
[CrossRef]

Liau, Z. L.

V. Diadiuk, Z. L. Liau, J. N. Walpole, J. W. Caunt, R. C. Williamson, “External-cavity coherent operation of InGaAsP buried-heterostructure laser array,” Appl. Phys. Lett. 55, 2161–2163 (1989).
[CrossRef]

Louradour, F.

A. Barthelemy, F. Louradour, V. Couderc, “Wavelength-tunable diffraction-limited operation of a standard high-power diode-laser array using an off-centred extended cavity,” Electron. Lett. 28, 2038–2040 (1992).
[CrossRef]

Mailhot, S.

Y. Champagne, S. Mailhot, N. McCarthy, “Numerical procedure for the lateral-mode analysis of broad area semiconductor lasers with an external cavity,” IEEE J. Quantum Electron. 31, 795–810 (1995).
[CrossRef]

S. Mailhot, G. Rousseau, N. McCarthy, “Improvement of lateral-mode discrimination of wide stripe semiconductor lasers by using a profiled reflectivity external mirror,” in Proceedings of the International Conference on Lasers ’94 (Society for Quantum Electronics, McLean, Va., 1994), pp. 284–288.

Massudi, R.

McCarthy, N.

J.-F. Lepage, N. McCarthy, “Apodizing holographic gratings for dual-wavelength operation of broad-area semiconductor lasers,” Appl. Opt. 37, 8420–8425 (1998).
[CrossRef]

J.-F. Lepage, R. Massudi, G. Anctil, S. Gilbert, M. Piché, N. McCarthy, “Apodizing holographic gratings for the modal control of semiconductor lasers,” Appl. Opt. 36, 4993–4998 (1997).
[CrossRef] [PubMed]

Y. Champagne, S. Mailhot, N. McCarthy, “Numerical procedure for the lateral-mode analysis of broad area semiconductor lasers with an external cavity,” IEEE J. Quantum Electron. 31, 795–810 (1995).
[CrossRef]

S. Mailhot, G. Rousseau, N. McCarthy, “Improvement of lateral-mode discrimination of wide stripe semiconductor lasers by using a profiled reflectivity external mirror,” in Proceedings of the International Conference on Lasers ’94 (Society for Quantum Electronics, McLean, Va., 1994), pp. 284–288.

Miller, H. Y.

Mooradian, A.

W. F. Sharfin, J. Seppala, A. Mooradian, B. A. Soltz, R. G. Waters, B. J. Vollmer, K. J. Bystrom, “High-power, diffraction-limited, narrow-band, external-cavity diode laser,” Appl. Phys. Lett. 54, 1731–1733 (1989).
[CrossRef]

Mowry, G.

J. R. Leger, G. Mowry, “External diode-laser-array cavity with mode-selecting mirror,” Appl. Phys. Lett. 63, 2884–2886 (1993).
[CrossRef]

Paoli, T. L.

J. R. Andrews, T. L. Paoli, W. Streifer, R. D. Burnham, “Individual spatial modes of a phase-locked injection laser array observed through spectral selection and selected with an external mirror,” J. Appl. Phys. 58, 2777–2779 (1985).
[CrossRef]

B. W. Hakki, T. L. Paoli, “Gain spectra in GaAs double-heterostructure injection lasers,” J. Appl. Phys. 46, 1299–1306 (1975).
[CrossRef]

Philipp-Rutz, E. M.

E. M. Philipp-Rutz, “Spatially coherent radiation from an array of GaAs lasers,” Appl. Phys. Lett. 26, 475–477 (1975).
[CrossRef]

Piché, M.

Rediker, R. H.

R. H. Rediker, R. P. Schloss, L. J. Van Ruyven, “Operation of individual diode lasers as a coherent ensemble controlled by a spatial filter within an external cavity,” Appl. Phys. Lett. 46, 133–135 (1985).
[CrossRef]

Rousseau, G.

S. Mailhot, G. Rousseau, N. McCarthy, “Improvement of lateral-mode discrimination of wide stripe semiconductor lasers by using a profiled reflectivity external mirror,” in Proceedings of the International Conference on Lasers ’94 (Society for Quantum Electronics, McLean, Va., 1994), pp. 284–288.

Ruff, J. A.

J. A. Ruff, A. E. Siegman, S. C. Wang, “Mode characteristics of broad area high power diode lasers in an external stable-unstable cavity,” in Conference on Lasers and Electro-Optics, Vol. 11 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), pp. 296–297.

Schloss, R. P.

R. H. Rediker, R. P. Schloss, L. J. Van Ruyven, “Operation of individual diode lasers as a coherent ensemble controlled by a spatial filter within an external cavity,” Appl. Phys. Lett. 46, 133–135 (1985).
[CrossRef]

Scifres, D. R.

J. Berger, D. F. Welch, W. Streifer, D. R. Scifres, “Narrowing the far field of a Y-junction laser array using a customized spatial filter in an external cavity,” Appl. Phys. Lett. 52, 1560–1562 (1988).
[CrossRef]

C. J. Chang-Hasnain, J. Berger, D. R. Scifres, W. Streifer, J. R. Whinnery, A. Dienes, “High power with high efficiency in a narrow single-lobed beam from a diode laser array in an external cavity,” Appl. Phys. Lett. 50, 1465–1467 (1987).
[CrossRef]

C. Chang-Hasnain, D. F. Welch, D. R. Scifres, J. R. Whinnery, A. Dienes, R. D. Burnham, “Diffraction-limited emission from a diode laser array in an apertured graded-index lens external cavity,” Appl. Phys. Lett. 49, 614–616 (1986).
[CrossRef]

J. Yaeli, W. Streifer, D. R. Scifres, P. S. Cross, R. L. Thornton, R. D. Burnham, “Array mode selection utilizing an external cavity configuration,” Appl. Phys. Lett. 47, 89–91 (1985).
[CrossRef]

Seppala, J.

W. F. Sharfin, J. Seppala, A. Mooradian, B. A. Soltz, R. G. Waters, B. J. Vollmer, K. J. Bystrom, “High-power, diffraction-limited, narrow-band, external-cavity diode laser,” Appl. Phys. Lett. 54, 1731–1733 (1989).
[CrossRef]

Sharfin, W. F.

W. F. Sharfin, J. Seppala, A. Mooradian, B. A. Soltz, R. G. Waters, B. J. Vollmer, K. J. Bystrom, “High-power, diffraction-limited, narrow-band, external-cavity diode laser,” Appl. Phys. Lett. 54, 1731–1733 (1989).
[CrossRef]

Shore, K. A.

Siegman, A. E.

A. E. Siegman, H. Y. Miller, “Unstable optical resonator loss calculations using the Prony method,” Appl. Opt. 9, 2729–2736 (1970).
[CrossRef] [PubMed]

J. A. Ruff, A. E. Siegman, S. C. Wang, “Mode characteristics of broad area high power diode lasers in an external stable-unstable cavity,” in Conference on Lasers and Electro-Optics, Vol. 11 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), pp. 296–297.

A. E. Siegman, Lasers, (University Science, Mill Valley, Calif., 1986), pp. 805–811.

Smith, J. S.

M. A. Hadley, G. C. Wilson, K. Y. Lau, J. S. Smith, “High single-transverse-mode output from external-cavity surface-emitting laser diodes,” Appl. Phys. Lett. 63, 1607–1609 (1993).
[CrossRef]

Soltz, B. A.

W. F. Sharfin, J. Seppala, A. Mooradian, B. A. Soltz, R. G. Waters, B. J. Vollmer, K. J. Bystrom, “High-power, diffraction-limited, narrow-band, external-cavity diode laser,” Appl. Phys. Lett. 54, 1731–1733 (1989).
[CrossRef]

Streifer, W.

J. Berger, D. F. Welch, W. Streifer, D. R. Scifres, “Narrowing the far field of a Y-junction laser array using a customized spatial filter in an external cavity,” Appl. Phys. Lett. 52, 1560–1562 (1988).
[CrossRef]

C. J. Chang-Hasnain, J. Berger, D. R. Scifres, W. Streifer, J. R. Whinnery, A. Dienes, “High power with high efficiency in a narrow single-lobed beam from a diode laser array in an external cavity,” Appl. Phys. Lett. 50, 1465–1467 (1987).
[CrossRef]

J. R. Andrews, T. L. Paoli, W. Streifer, R. D. Burnham, “Individual spatial modes of a phase-locked injection laser array observed through spectral selection and selected with an external mirror,” J. Appl. Phys. 58, 2777–2779 (1985).
[CrossRef]

J. Yaeli, W. Streifer, D. R. Scifres, P. S. Cross, R. L. Thornton, R. D. Burnham, “Array mode selection utilizing an external cavity configuration,” Appl. Phys. Lett. 47, 89–91 (1985).
[CrossRef]

Thornton, R. L.

J. Yaeli, W. Streifer, D. R. Scifres, P. S. Cross, R. L. Thornton, R. D. Burnham, “Array mode selection utilizing an external cavity configuration,” Appl. Phys. Lett. 47, 89–91 (1985).
[CrossRef]

Valle, A.

Van Ruyven, L. J.

R. H. Rediker, R. P. Schloss, L. J. Van Ruyven, “Operation of individual diode lasers as a coherent ensemble controlled by a spatial filter within an external cavity,” Appl. Phys. Lett. 46, 133–135 (1985).
[CrossRef]

Vollmer, B. J.

W. F. Sharfin, J. Seppala, A. Mooradian, B. A. Soltz, R. G. Waters, B. J. Vollmer, K. J. Bystrom, “High-power, diffraction-limited, narrow-band, external-cavity diode laser,” Appl. Phys. Lett. 54, 1731–1733 (1989).
[CrossRef]

Walpole, J. N.

V. Diadiuk, Z. L. Liau, J. N. Walpole, J. W. Caunt, R. C. Williamson, “External-cavity coherent operation of InGaAsP buried-heterostructure laser array,” Appl. Phys. Lett. 55, 2161–2163 (1989).
[CrossRef]

Wang, S. C.

J. A. Ruff, A. E. Siegman, S. C. Wang, “Mode characteristics of broad area high power diode lasers in an external stable-unstable cavity,” in Conference on Lasers and Electro-Optics, Vol. 11 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), pp. 296–297.

Waters, R. G.

W. F. Sharfin, J. Seppala, A. Mooradian, B. A. Soltz, R. G. Waters, B. J. Vollmer, K. J. Bystrom, “High-power, diffraction-limited, narrow-band, external-cavity diode laser,” Appl. Phys. Lett. 54, 1731–1733 (1989).
[CrossRef]

Welch, D. F.

J. Berger, D. F. Welch, W. Streifer, D. R. Scifres, “Narrowing the far field of a Y-junction laser array using a customized spatial filter in an external cavity,” Appl. Phys. Lett. 52, 1560–1562 (1988).
[CrossRef]

C. Chang-Hasnain, D. F. Welch, D. R. Scifres, J. R. Whinnery, A. Dienes, R. D. Burnham, “Diffraction-limited emission from a diode laser array in an apertured graded-index lens external cavity,” Appl. Phys. Lett. 49, 614–616 (1986).
[CrossRef]

Weller, J. F.

L. Goldberg, J. F. Weller, “Narrow lobe emission of high power broad stripe laser in external resonator cavity,” Electron. Lett. 25, 112–114 (1989).
[CrossRef]

L. Goldberg, J. F. Weller, “Single lobe operation of a 40-element laser array in an external ring laser cavity,” Appl. Phys. Lett. 51, 871–873 (1987).
[CrossRef]

Whinnery, J. R.

C. J. Chang-Hasnain, J. Berger, D. R. Scifres, W. Streifer, J. R. Whinnery, A. Dienes, “High power with high efficiency in a narrow single-lobed beam from a diode laser array in an external cavity,” Appl. Phys. Lett. 50, 1465–1467 (1987).
[CrossRef]

C. Chang-Hasnain, D. F. Welch, D. R. Scifres, J. R. Whinnery, A. Dienes, R. D. Burnham, “Diffraction-limited emission from a diode laser array in an apertured graded-index lens external cavity,” Appl. Phys. Lett. 49, 614–616 (1986).
[CrossRef]

Williamson, R. C.

V. Diadiuk, Z. L. Liau, J. N. Walpole, J. W. Caunt, R. C. Williamson, “External-cavity coherent operation of InGaAsP buried-heterostructure laser array,” Appl. Phys. Lett. 55, 2161–2163 (1989).
[CrossRef]

Wilson, G. C.

M. A. Hadley, G. C. Wilson, K. Y. Lau, J. S. Smith, “High single-transverse-mode output from external-cavity surface-emitting laser diodes,” Appl. Phys. Lett. 63, 1607–1609 (1993).
[CrossRef]

Yaeli, J.

J. Yaeli, W. Streifer, D. R. Scifres, P. S. Cross, R. L. Thornton, R. D. Burnham, “Array mode selection utilizing an external cavity configuration,” Appl. Phys. Lett. 47, 89–91 (1985).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. A. Hadley, G. C. Wilson, K. Y. Lau, J. S. Smith, “High single-transverse-mode output from external-cavity surface-emitting laser diodes,” Appl. Phys. Lett. 63, 1607–1609 (1993).
[CrossRef]

W. F. Sharfin, J. Seppala, A. Mooradian, B. A. Soltz, R. G. Waters, B. J. Vollmer, K. J. Bystrom, “High-power, diffraction-limited, narrow-band, external-cavity diode laser,” Appl. Phys. Lett. 54, 1731–1733 (1989).
[CrossRef]

E. M. Philipp-Rutz, “Spatially coherent radiation from an array of GaAs lasers,” Appl. Phys. Lett. 26, 475–477 (1975).
[CrossRef]

R. H. Rediker, R. P. Schloss, L. J. Van Ruyven, “Operation of individual diode lasers as a coherent ensemble controlled by a spatial filter within an external cavity,” Appl. Phys. Lett. 46, 133–135 (1985).
[CrossRef]

J. Yaeli, W. Streifer, D. R. Scifres, P. S. Cross, R. L. Thornton, R. D. Burnham, “Array mode selection utilizing an external cavity configuration,” Appl. Phys. Lett. 47, 89–91 (1985).
[CrossRef]

J. Berger, D. F. Welch, W. Streifer, D. R. Scifres, “Narrowing the far field of a Y-junction laser array using a customized spatial filter in an external cavity,” Appl. Phys. Lett. 52, 1560–1562 (1988).
[CrossRef]

V. Diadiuk, Z. L. Liau, J. N. Walpole, J. W. Caunt, R. C. Williamson, “External-cavity coherent operation of InGaAsP buried-heterostructure laser array,” Appl. Phys. Lett. 55, 2161–2163 (1989).
[CrossRef]

L. Goldberg, J. F. Weller, “Single lobe operation of a 40-element laser array in an external ring laser cavity,” Appl. Phys. Lett. 51, 871–873 (1987).
[CrossRef]

C. Chang-Hasnain, D. F. Welch, D. R. Scifres, J. R. Whinnery, A. Dienes, R. D. Burnham, “Diffraction-limited emission from a diode laser array in an apertured graded-index lens external cavity,” Appl. Phys. Lett. 49, 614–616 (1986).
[CrossRef]

C. J. Chang-Hasnain, J. Berger, D. R. Scifres, W. Streifer, J. R. Whinnery, A. Dienes, “High power with high efficiency in a narrow single-lobed beam from a diode laser array in an external cavity,” Appl. Phys. Lett. 50, 1465–1467 (1987).
[CrossRef]

J. R. Leger, G. Mowry, “External diode-laser-array cavity with mode-selecting mirror,” Appl. Phys. Lett. 63, 2884–2886 (1993).
[CrossRef]

Bell Syst. Tech. J.

A. G. Fox, T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961).
[CrossRef]

Electron. Lett.

A. Barthelemy, F. Louradour, V. Couderc, “Wavelength-tunable diffraction-limited operation of a standard high-power diode-laser array using an off-centred extended cavity,” Electron. Lett. 28, 2038–2040 (1992).
[CrossRef]

L. Goldberg, J. F. Weller, “Narrow lobe emission of high power broad stripe laser in external resonator cavity,” Electron. Lett. 25, 112–114 (1989).
[CrossRef]

IEEE J. Quantum Electron.

Y. Champagne, S. Mailhot, N. McCarthy, “Numerical procedure for the lateral-mode analysis of broad area semiconductor lasers with an external cavity,” IEEE J. Quantum Electron. 31, 795–810 (1995).
[CrossRef]

J. Appl. Phys.

B. W. Hakki, T. L. Paoli, “Gain spectra in GaAs double-heterostructure injection lasers,” J. Appl. Phys. 46, 1299–1306 (1975).
[CrossRef]

G. P. Agrawal, “Fast-Fourier-transform based beam propagation model for stripe-geometry semiconductor lasers: inclusion of axial effects,” J. Appl. Phys. 56, 3100–3109 (1984).
[CrossRef]

J. R. Andrews, T. L. Paoli, W. Streifer, R. D. Burnham, “Individual spatial modes of a phase-locked injection laser array observed through spectral selection and selected with an external mirror,” J. Appl. Phys. 58, 2777–2779 (1985).
[CrossRef]

J. Opt. Soc. Am. B

Other

A. E. Siegman, Lasers, (University Science, Mill Valley, Calif., 1986), pp. 805–811.

S. Mailhot, G. Rousseau, N. McCarthy, “Improvement of lateral-mode discrimination of wide stripe semiconductor lasers by using a profiled reflectivity external mirror,” in Proceedings of the International Conference on Lasers ’94 (Society for Quantum Electronics, McLean, Va., 1994), pp. 284–288.

J. A. Ruff, A. E. Siegman, S. C. Wang, “Mode characteristics of broad area high power diode lasers in an external stable-unstable cavity,” in Conference on Lasers and Electro-Optics, Vol. 11 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), pp. 296–297.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Experimental setup of the diode laser with an anamorphic external cavity. The junction plane of the laser is perpendicular to the plane of the figure. f 2 is a cylindrical lens with its curvature perpendicular to the figure. The apparatus used for the characterization of the beam is also shown. RM is a mirror that can be rotated to send the beam toward PD2 or to the CCD camera; HR, highly reflective. Other abbreviations are defined in text.

Fig. 2
Fig. 2

Lateral (a) far-field and (b) near-field patterns of the output beam when the free-running laser is operated near and above lasing threshold (I/ I th = 1.02 and I/ I th = 1.58 for curves 1 and 2, respectively).

Fig. 3
Fig. 3

Output beam spectrum when the free-running laser is operated near threshold (I/ I th = 1.08). Adjacent longitudinal modes are separated by 0.22 nm. Numbers 0–3 indicate the order of the lateral modes for the longitudinal mode centered at 842 nm.

Fig. 4
Fig. 4

Spectrally resolved near-field intensity distribution without an external cavity at a current I = 1.56I th. Horizontal axis, wavelength; vertical axis, lateral x direction (parallel to the junction).

Fig. 5
Fig. 5

Lateral modes associated with one longitudinal mode for several injection currents: (a) I/ I th ≈ 1.00 (0 mW), (b) I/ I th = 1.03 (4.3 mW), (c) I/ I th = 1.17 (21 mW), (d) I/ I th = 1.6 (78 mW).

Fig. 6
Fig. 6

Full width at half-maximum of the near-field intensity distribution of lateral modes as a function of the order n of the mode. The theoretical values are calculated at threshold; experimental values were determined at I/ I th ≈ 1.6.

Fig. 7
Fig. 7

Calculated threshold current (open circles) of the diode laser with the external cavity and calculated rms width (dashed curve) of the beam incident upon the AR-coated facet after its round trip in the external cavity. Solid curve, rms width as calculated with the ABCD matrix formalism.

Fig. 8
Fig. 8

Relative modulus of the eigenvalue of the dominant lateral modes (n = 0–6) as a function of distance L 2. For each value of L 2 the injection current is adjusted to reach the lasing threshold of the dominant mode.

Fig. 9
Fig. 9

Experimental values of the threshold current as a function of distance L 2. The corresponding calculated values of the threshold current presented in Fig. 7 are shown here (open circles) for comparison.

Fig. 10
Fig. 10

Light–current characteristics measured for three values of L 2.

Fig. 11
Fig. 11

(a) Far-field and (b) near-field intensity distributions of the beam coupled through external mirror M1 at L 2 = 65 mm and at an output power of 34 mW.

Fig. 12
Fig. 12

Spectrally resolved near-field intensity distribution obtained with the anamorphic external cavity (L 2 = 100 mm and P = 37 mW). The laser emission contains only one longitudinal mode with one lateral mode.

Fig. 13
Fig. 13

Experimental threshold currents of the single-lateral-mode regime (filled circles) and of the multilateral mode regime (filled squares) as a function of distance L 2. Open triangles, calculated values for the multimode regime.

Metrics