Abstract

We theoretically analyze the relationship between the electric field envelope shape of an optical pulse launched into an optical fiber and the power spectrum of the spontaneous Brillouin backscattered light it produces. The electric field envelope is characterized by the pulse width, leading–trailing time, and steepness. The peak power of the launched, pulsed-light power spectrum is proportional to the square of the pulse width regardless of the pulse leading–trailing time and steepness, and the power spectrum broadens in inverse proportion to the pulse width. The peak power of the spontaneous Brillouin backscattered light produced by the launched, pulsed light is proportional to the pulse width when it is above approximately 100 ns and is proportional to the square of the pulse width when it is below approximately 1 ns. The power spectrum of the spontaneous Brillouin backscattered light also broadens rapidly corresponding to the pulse width, when the pulse width falls below approximately 30 ns. As the pulse leading–trailing time is shortened or the pulse leading–trailing part becomes steep, the Brillouin backscattered-light power spectrum broadens greatly, even if the launched pulse width remains constant. Our analysis showed that an optical pulse with a triangular-shaped electric field envelope forms the Brillouin backscattered-light power spectrum with the narrowest profile and consequently gives the minimum error in measuring the peak-power frequency, when the pulse width is below approximately 50 ns. The measurement error with the triangular-shaped pulsed light is 1/ 2 times smaller than that for a rectangular-shaped pulsed light, when the pulse width falls below several nanoseconds. By contrast, the rectangular-shaped envelope gives the minimum error when the pulse width exceeds ∼50 ns.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Horiguchi, T. Kurashima, M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1, 107–108 (1989).
    [CrossRef]
  2. M. Niklès, L. Thévenaz, P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
    [CrossRef]
  3. T. Kurashima, T. Horiguchi, M. Tateda, “Thermal effects of Brillouin gain spectra in single-mode fibers,” IEEE Photonics Technol. Lett. 2, 718–720 (1990).
    [CrossRef]
  4. T. Kurashima, T. Horiguchi, M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15, 1038–1040 (1990).
    [CrossRef] [PubMed]
  5. X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1348 (1995).
    [CrossRef]
  6. D. Culverhouse, F. Farahi, C. N. Pannell, D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25, 913–915 (1989).
    [CrossRef]
  7. T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers,” Opt. Lett. 22, 787–789 (1997).
    [CrossRef] [PubMed]
  8. D. Graus, T. Gogolla, K. Krebber, F. Schliep, “Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements,” J. Lightwave Technol. 15, 654–662 (1997).
    [CrossRef]
  9. T. Horiguchi, M. Tateda, “BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7, 1170–1176 (1989).
    [CrossRef]
  10. M. Niklès, L. Thévenaz, P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21, 758–760 (1996).
    [CrossRef] [PubMed]
  11. K. Hotate, T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique—proposal, experiment and simulation,” IEICE Trans. Electron. E83-C, 405–412 (2000).
  12. T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B382–390 (1993).
  13. T. Kurashima, M. Tateda, T. Horiguchi, Y. Koyamada, “Performance improvement of a combined OTDR for distributed strain and loss measurement by randomizing the reference light polarization state,” IEEE Photonics Technol. Lett. 9, 360–362 (1997).
    [CrossRef]
  14. M. K. Baronski, S. M. Jensen, “Fiber waveguides: a novel technique for investigating attenuation characteristics,” Appl. Opt. 15, 2112–2115 (1976).
    [CrossRef]
  15. H. Naruse, “Distributed fiber optic sensors using Brillouin scattering and their application,” in Proceedings of the Optical Fiber Measurement Conference OFMC99 (University of Nantes, Nantes, France, 1999), pp. 100–105.
  16. N. Yasue, H. Naruse, J. Masuda, H. Kino, T. Nakamura, T. Yamaura, “Concrete pipe strain measurement using optical fiber sensor,” IEICE Trans. Electron. E83-C, 468–474 (2000).
  17. H. Naruse, Y. Uchiyama, T. Kurashima, S. Unno, “River levee change detection using distributed fiber optic strain sensor,” IEICE Trans. Electron. E83-C, 462–467 (2000).
  18. C. N. Pannell, J. Dhliwayo, D. J. Webb, “The accuracy of parameter estimation from noisy data, with application to resonance peak estimation in distributed Brillouin sensing,” Meas. Sci. Technol. 9, 50–57 (1998).
    [CrossRef]
  19. A. W. Brown, M. D. DeMerchant, X. Bao, T. W. Bremner, “Analysis of the precision of a Brillouin scattering based distributed strain sensor,” in Proceedings of Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3670, 359–365 (1999).
  20. A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. A. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Proceedings of the International Conference of Optical Fiber Sensors OFS’97 (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 324–327.
  21. H. Naruse, M. Tateda, “Trade-off between the spatial and frequency resolutions in measuring the power spectrum of the Brillouin backscattered light in an optical fiber,” Appl. Opt. 38, 6516–6521 (1999).
    [CrossRef]
  22. T. Kurashima, T. Horiguchi, M. Tateda, “Distributed optical fiber sensor using Brillouin scattering,” IEICE Jpn. J74-c-II, 467–476 (1991).
  23. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1303 (1995).
    [CrossRef]

2000 (3)

K. Hotate, T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique—proposal, experiment and simulation,” IEICE Trans. Electron. E83-C, 405–412 (2000).

N. Yasue, H. Naruse, J. Masuda, H. Kino, T. Nakamura, T. Yamaura, “Concrete pipe strain measurement using optical fiber sensor,” IEICE Trans. Electron. E83-C, 468–474 (2000).

H. Naruse, Y. Uchiyama, T. Kurashima, S. Unno, “River levee change detection using distributed fiber optic strain sensor,” IEICE Trans. Electron. E83-C, 462–467 (2000).

1999 (1)

1998 (1)

C. N. Pannell, J. Dhliwayo, D. J. Webb, “The accuracy of parameter estimation from noisy data, with application to resonance peak estimation in distributed Brillouin sensing,” Meas. Sci. Technol. 9, 50–57 (1998).
[CrossRef]

1997 (4)

T. Kurashima, M. Tateda, T. Horiguchi, Y. Koyamada, “Performance improvement of a combined OTDR for distributed strain and loss measurement by randomizing the reference light polarization state,” IEEE Photonics Technol. Lett. 9, 360–362 (1997).
[CrossRef]

M. Niklès, L. Thévenaz, P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers,” Opt. Lett. 22, 787–789 (1997).
[CrossRef] [PubMed]

D. Graus, T. Gogolla, K. Krebber, F. Schliep, “Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements,” J. Lightwave Technol. 15, 654–662 (1997).
[CrossRef]

1996 (1)

1995 (2)

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1348 (1995).
[CrossRef]

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1303 (1995).
[CrossRef]

1993 (1)

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B382–390 (1993).

1991 (1)

T. Kurashima, T. Horiguchi, M. Tateda, “Distributed optical fiber sensor using Brillouin scattering,” IEICE Jpn. J74-c-II, 467–476 (1991).

1990 (2)

T. Kurashima, T. Horiguchi, M. Tateda, “Thermal effects of Brillouin gain spectra in single-mode fibers,” IEEE Photonics Technol. Lett. 2, 718–720 (1990).
[CrossRef]

T. Kurashima, T. Horiguchi, M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15, 1038–1040 (1990).
[CrossRef] [PubMed]

1989 (3)

D. Culverhouse, F. Farahi, C. N. Pannell, D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25, 913–915 (1989).
[CrossRef]

T. Horiguchi, T. Kurashima, M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1, 107–108 (1989).
[CrossRef]

T. Horiguchi, M. Tateda, “BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7, 1170–1176 (1989).
[CrossRef]

1976 (1)

Bao, X.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1348 (1995).
[CrossRef]

A. W. Brown, M. D. DeMerchant, X. Bao, T. W. Bremner, “Analysis of the precision of a Brillouin scattering based distributed strain sensor,” in Proceedings of Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3670, 359–365 (1999).

Baronski, M. K.

Bremner, T. W.

A. W. Brown, M. D. DeMerchant, X. Bao, T. W. Bremner, “Analysis of the precision of a Brillouin scattering based distributed strain sensor,” in Proceedings of Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3670, 359–365 (1999).

Brown, A. W.

A. W. Brown, M. D. DeMerchant, X. Bao, T. W. Bremner, “Analysis of the precision of a Brillouin scattering based distributed strain sensor,” in Proceedings of Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3670, 359–365 (1999).

Culverhouse, D.

D. Culverhouse, F. Farahi, C. N. Pannell, D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25, 913–915 (1989).
[CrossRef]

DeMerchant, M. D.

A. W. Brown, M. D. DeMerchant, X. Bao, T. W. Bremner, “Analysis of the precision of a Brillouin scattering based distributed strain sensor,” in Proceedings of Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3670, 359–365 (1999).

Dhliwayo, J.

C. N. Pannell, J. Dhliwayo, D. J. Webb, “The accuracy of parameter estimation from noisy data, with application to resonance peak estimation in distributed Brillouin sensing,” Meas. Sci. Technol. 9, 50–57 (1998).
[CrossRef]

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1348 (1995).
[CrossRef]

Facchini, M.

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. A. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Proceedings of the International Conference of Optical Fiber Sensors OFS’97 (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 324–327.

Farahi, F.

D. Culverhouse, F. Farahi, C. N. Pannell, D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25, 913–915 (1989).
[CrossRef]

Farhadiroushan, M.

Fellay, A.

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. A. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Proceedings of the International Conference of Optical Fiber Sensors OFS’97 (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 324–327.

Furukawa, S.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B382–390 (1993).

Gogolla, T.

D. Graus, T. Gogolla, K. Krebber, F. Schliep, “Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements,” J. Lightwave Technol. 15, 654–662 (1997).
[CrossRef]

Graus, D.

D. Graus, T. Gogolla, K. Krebber, F. Schliep, “Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements,” J. Lightwave Technol. 15, 654–662 (1997).
[CrossRef]

Handerek, V. A.

Hasegawa, T.

K. Hotate, T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique—proposal, experiment and simulation,” IEICE Trans. Electron. E83-C, 405–412 (2000).

Heron, N.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1348 (1995).
[CrossRef]

Horiguchi, T.

T. Kurashima, M. Tateda, T. Horiguchi, Y. Koyamada, “Performance improvement of a combined OTDR for distributed strain and loss measurement by randomizing the reference light polarization state,” IEEE Photonics Technol. Lett. 9, 360–362 (1997).
[CrossRef]

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1303 (1995).
[CrossRef]

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B382–390 (1993).

T. Kurashima, T. Horiguchi, M. Tateda, “Distributed optical fiber sensor using Brillouin scattering,” IEICE Jpn. J74-c-II, 467–476 (1991).

T. Kurashima, T. Horiguchi, M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15, 1038–1040 (1990).
[CrossRef] [PubMed]

T. Kurashima, T. Horiguchi, M. Tateda, “Thermal effects of Brillouin gain spectra in single-mode fibers,” IEEE Photonics Technol. Lett. 2, 718–720 (1990).
[CrossRef]

T. Horiguchi, T. Kurashima, M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1, 107–108 (1989).
[CrossRef]

T. Horiguchi, M. Tateda, “BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7, 1170–1176 (1989).
[CrossRef]

Hotate, K.

K. Hotate, T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique—proposal, experiment and simulation,” IEICE Trans. Electron. E83-C, 405–412 (2000).

Izumita, H.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B382–390 (1993).

Jackson, D. A.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1348 (1995).
[CrossRef]

D. Culverhouse, F. Farahi, C. N. Pannell, D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25, 913–915 (1989).
[CrossRef]

Jensen, S. M.

Kino, H.

N. Yasue, H. Naruse, J. Masuda, H. Kino, T. Nakamura, T. Yamaura, “Concrete pipe strain measurement using optical fiber sensor,” IEICE Trans. Electron. E83-C, 468–474 (2000).

Koyamada, Y.

T. Kurashima, M. Tateda, T. Horiguchi, Y. Koyamada, “Performance improvement of a combined OTDR for distributed strain and loss measurement by randomizing the reference light polarization state,” IEEE Photonics Technol. Lett. 9, 360–362 (1997).
[CrossRef]

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1303 (1995).
[CrossRef]

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B382–390 (1993).

Krebber, K.

D. Graus, T. Gogolla, K. Krebber, F. Schliep, “Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements,” J. Lightwave Technol. 15, 654–662 (1997).
[CrossRef]

Kurashima, T.

H. Naruse, Y. Uchiyama, T. Kurashima, S. Unno, “River levee change detection using distributed fiber optic strain sensor,” IEICE Trans. Electron. E83-C, 462–467 (2000).

T. Kurashima, M. Tateda, T. Horiguchi, Y. Koyamada, “Performance improvement of a combined OTDR for distributed strain and loss measurement by randomizing the reference light polarization state,” IEEE Photonics Technol. Lett. 9, 360–362 (1997).
[CrossRef]

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1303 (1995).
[CrossRef]

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B382–390 (1993).

T. Kurashima, T. Horiguchi, M. Tateda, “Distributed optical fiber sensor using Brillouin scattering,” IEICE Jpn. J74-c-II, 467–476 (1991).

T. Kurashima, T. Horiguchi, M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15, 1038–1040 (1990).
[CrossRef] [PubMed]

T. Kurashima, T. Horiguchi, M. Tateda, “Thermal effects of Brillouin gain spectra in single-mode fibers,” IEEE Photonics Technol. Lett. 2, 718–720 (1990).
[CrossRef]

T. Horiguchi, T. Kurashima, M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1, 107–108 (1989).
[CrossRef]

Masuda, J.

N. Yasue, H. Naruse, J. Masuda, H. Kino, T. Nakamura, T. Yamaura, “Concrete pipe strain measurement using optical fiber sensor,” IEICE Trans. Electron. E83-C, 468–474 (2000).

Nakamura, T.

N. Yasue, H. Naruse, J. Masuda, H. Kino, T. Nakamura, T. Yamaura, “Concrete pipe strain measurement using optical fiber sensor,” IEICE Trans. Electron. E83-C, 468–474 (2000).

Naruse, H.

N. Yasue, H. Naruse, J. Masuda, H. Kino, T. Nakamura, T. Yamaura, “Concrete pipe strain measurement using optical fiber sensor,” IEICE Trans. Electron. E83-C, 468–474 (2000).

H. Naruse, Y. Uchiyama, T. Kurashima, S. Unno, “River levee change detection using distributed fiber optic strain sensor,” IEICE Trans. Electron. E83-C, 462–467 (2000).

H. Naruse, M. Tateda, “Trade-off between the spatial and frequency resolutions in measuring the power spectrum of the Brillouin backscattered light in an optical fiber,” Appl. Opt. 38, 6516–6521 (1999).
[CrossRef]

H. Naruse, “Distributed fiber optic sensors using Brillouin scattering and their application,” in Proceedings of the Optical Fiber Measurement Conference OFMC99 (University of Nantes, Nantes, France, 1999), pp. 100–105.

Niklès, M.

M. Niklès, L. Thévenaz, P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

M. Niklès, L. Thévenaz, P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21, 758–760 (1996).
[CrossRef] [PubMed]

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. A. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Proceedings of the International Conference of Optical Fiber Sensors OFS’97 (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 324–327.

Pannell, C. N.

C. N. Pannell, J. Dhliwayo, D. J. Webb, “The accuracy of parameter estimation from noisy data, with application to resonance peak estimation in distributed Brillouin sensing,” Meas. Sci. Technol. 9, 50–57 (1998).
[CrossRef]

D. Culverhouse, F. Farahi, C. N. Pannell, D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25, 913–915 (1989).
[CrossRef]

Parker, T. R.

Robert, P. A.

M. Niklès, L. Thévenaz, P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

M. Niklès, L. Thévenaz, P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21, 758–760 (1996).
[CrossRef] [PubMed]

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. A. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Proceedings of the International Conference of Optical Fiber Sensors OFS’97 (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 324–327.

Rogers, A. J.

Schliep, F.

D. Graus, T. Gogolla, K. Krebber, F. Schliep, “Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements,” J. Lightwave Technol. 15, 654–662 (1997).
[CrossRef]

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1303 (1995).
[CrossRef]

Tateda, M.

H. Naruse, M. Tateda, “Trade-off between the spatial and frequency resolutions in measuring the power spectrum of the Brillouin backscattered light in an optical fiber,” Appl. Opt. 38, 6516–6521 (1999).
[CrossRef]

T. Kurashima, M. Tateda, T. Horiguchi, Y. Koyamada, “Performance improvement of a combined OTDR for distributed strain and loss measurement by randomizing the reference light polarization state,” IEEE Photonics Technol. Lett. 9, 360–362 (1997).
[CrossRef]

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1303 (1995).
[CrossRef]

T. Kurashima, T. Horiguchi, M. Tateda, “Distributed optical fiber sensor using Brillouin scattering,” IEICE Jpn. J74-c-II, 467–476 (1991).

T. Kurashima, T. Horiguchi, M. Tateda, “Thermal effects of Brillouin gain spectra in single-mode fibers,” IEEE Photonics Technol. Lett. 2, 718–720 (1990).
[CrossRef]

T. Kurashima, T. Horiguchi, M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15, 1038–1040 (1990).
[CrossRef] [PubMed]

T. Horiguchi, T. Kurashima, M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1, 107–108 (1989).
[CrossRef]

T. Horiguchi, M. Tateda, “BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7, 1170–1176 (1989).
[CrossRef]

Thévenaz, L.

M. Niklès, L. Thévenaz, P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

M. Niklès, L. Thévenaz, P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21, 758–760 (1996).
[CrossRef] [PubMed]

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. A. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Proceedings of the International Conference of Optical Fiber Sensors OFS’97 (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 324–327.

Uchiyama, Y.

H. Naruse, Y. Uchiyama, T. Kurashima, S. Unno, “River levee change detection using distributed fiber optic strain sensor,” IEICE Trans. Electron. E83-C, 462–467 (2000).

Unno, S.

H. Naruse, Y. Uchiyama, T. Kurashima, S. Unno, “River levee change detection using distributed fiber optic strain sensor,” IEICE Trans. Electron. E83-C, 462–467 (2000).

Webb, D. J.

C. N. Pannell, J. Dhliwayo, D. J. Webb, “The accuracy of parameter estimation from noisy data, with application to resonance peak estimation in distributed Brillouin sensing,” Meas. Sci. Technol. 9, 50–57 (1998).
[CrossRef]

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1348 (1995).
[CrossRef]

Yamaura, T.

N. Yasue, H. Naruse, J. Masuda, H. Kino, T. Nakamura, T. Yamaura, “Concrete pipe strain measurement using optical fiber sensor,” IEICE Trans. Electron. E83-C, 468–474 (2000).

Yasue, N.

N. Yasue, H. Naruse, J. Masuda, H. Kino, T. Nakamura, T. Yamaura, “Concrete pipe strain measurement using optical fiber sensor,” IEICE Trans. Electron. E83-C, 468–474 (2000).

Appl. Opt. (2)

Electron. Lett. (1)

D. Culverhouse, F. Farahi, C. N. Pannell, D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25, 913–915 (1989).
[CrossRef]

IEEE Photonics Technol. Lett. (3)

T. Horiguchi, T. Kurashima, M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1, 107–108 (1989).
[CrossRef]

T. Kurashima, T. Horiguchi, M. Tateda, “Thermal effects of Brillouin gain spectra in single-mode fibers,” IEEE Photonics Technol. Lett. 2, 718–720 (1990).
[CrossRef]

T. Kurashima, M. Tateda, T. Horiguchi, Y. Koyamada, “Performance improvement of a combined OTDR for distributed strain and loss measurement by randomizing the reference light polarization state,” IEEE Photonics Technol. Lett. 9, 360–362 (1997).
[CrossRef]

IEICE Jpn. (1)

T. Kurashima, T. Horiguchi, M. Tateda, “Distributed optical fiber sensor using Brillouin scattering,” IEICE Jpn. J74-c-II, 467–476 (1991).

IEICE Trans. Commun. (1)

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B382–390 (1993).

IEICE Trans. Electron. (3)

K. Hotate, T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique—proposal, experiment and simulation,” IEICE Trans. Electron. E83-C, 405–412 (2000).

N. Yasue, H. Naruse, J. Masuda, H. Kino, T. Nakamura, T. Yamaura, “Concrete pipe strain measurement using optical fiber sensor,” IEICE Trans. Electron. E83-C, 468–474 (2000).

H. Naruse, Y. Uchiyama, T. Kurashima, S. Unno, “River levee change detection using distributed fiber optic strain sensor,” IEICE Trans. Electron. E83-C, 462–467 (2000).

J. Lightwave Technol. (5)

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1348 (1995).
[CrossRef]

M. Niklès, L. Thévenaz, P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

D. Graus, T. Gogolla, K. Krebber, F. Schliep, “Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements,” J. Lightwave Technol. 15, 654–662 (1997).
[CrossRef]

T. Horiguchi, M. Tateda, “BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7, 1170–1176 (1989).
[CrossRef]

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1303 (1995).
[CrossRef]

Meas. Sci. Technol. (1)

C. N. Pannell, J. Dhliwayo, D. J. Webb, “The accuracy of parameter estimation from noisy data, with application to resonance peak estimation in distributed Brillouin sensing,” Meas. Sci. Technol. 9, 50–57 (1998).
[CrossRef]

Opt. Lett. (3)

Other (3)

A. W. Brown, M. D. DeMerchant, X. Bao, T. W. Bremner, “Analysis of the precision of a Brillouin scattering based distributed strain sensor,” in Proceedings of Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3670, 359–365 (1999).

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. A. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Proceedings of the International Conference of Optical Fiber Sensors OFS’97 (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 324–327.

H. Naruse, “Distributed fiber optic sensors using Brillouin scattering and their application,” in Proceedings of the Optical Fiber Measurement Conference OFMC99 (University of Nantes, Nantes, France, 1999), pp. 100–105.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Basic configuration of measurement system.

Fig. 2
Fig. 2

Electric field envelope of launched pulse.

Fig. 3
Fig. 3

Power spectra of launched pulses with various shapes. (a) r = 0.5, (b) r = 1.

Fig. 4
Fig. 4

Relationship between power spectra of launched, pulsed light and Brillouin backscattered light.

Fig. 5
Fig. 5

Brillouin backscattered-light power spectra for various input pulse shapes. (a) r = 0.5, (b) r = 1.

Fig. 6
Fig. 6

Peak power of spontaneous Brillouin backscattered light for various input pulse shapes.

Fig. 7
Fig. 7

Relationship between launched pulse shape and normalized FWHM of Brillouin backscattered light. (a) r = 0.5, (b) r = 1.

Tables (1)

Tables Icon

Table 1 Normalized Peak-Power Frequency-Measurement Error Δα

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

PBz, ν=gν, νBc2n P exp-2αzz,
gν, νB=hw/22ν-νB2+w/22,
h=πn7p122cλ2ρvw/2,
z=ct/2n,
Et=ELtexpi2πf0t=0|t|T21/22/Δτmt+T2m expi2πf0t-T2t-τ/21-1/2-2/Δτmt+T1mexpi2πf0t-τ/2t-T1expi2πf0t|t|T11-1/22/Δτmt-T1mexpi2πf0tT1tτ/21/2-2/Δτmt-T2m expi2πf0tτ/2tT2,
T1=τ-Δτ/2,
T2=τ+Δτ/2.
Ppf, f0=τ2sin πf-f0τπf-f0τ2-m!imπf-f0Δτm×k=0m im-k1+-1km-k!πf-f0Δτm-k-expiπf-f0Δτ+-1m×exp-iπf-f0Δτ2,
Ppf, f0m=1=τ sinAβ/2Aβ/2sinrAβ/2rAβ/22,
Ppf, f0m=2=τ sinAβ/2Aβ/2sinrAβ/4rAβ/42,
Ppf, f0m=3=6τ sinAβ/2Aβ/2rAβ/2-sinrAβ/2rAβ/232,
A=πτw,
β=f-f0/w/2,
r=Δτ/τ.
Ppf, f0m==τ sinAβ/2Aβ/22.
Hν=- Ppf, f0hw/22ν-f-SB2+w/22df.
α=ν-νB/w/2.
Hα=τhα2+11-r3+2rA23α2-1α2+12+1r2A3α2+13-4αα2-1×2 exp-Asin Aα+2 exp-rA×sin rAα-exp-1+rAsin1+rAα-exp-1-rAsin1-rAα+α4-6α2+12-2 exp-A×cos Aα-2 exp-rAcos rAα+exp-1+rAcos1+rAα+exp-1-rAcos1-rAα.
H0m=1=τh1-r3-2rA2+1r2A321-exp-A-exp-2A+exp-1+rA+exp-1-rA,
H0m=1τh1-r/3.
H0m=1πhwτ2/2.
HS-HN=HS1-pΔα2.
Δα=1/p SNR1/4,
p=-Y/2X,
X=1-r3-2rA2+1r2A32-2 exp-A-2 exp-rA+exp-1+rA+exp-1-rA,
Y=-21-r3+24rA2+1r2A3-40+2 exp-AA2+8A+20+2 exp-rAr2A2+8rA+20-exp-1+rA1+r2A2+81+rA+20-exp-1-rA1-r2A2+81-rA+20.
SNRm=1=H0m=1H0m=2SNRm=.
H0m==τh A-1+exp-AA.
p1,
SNRm=11-r/32 SNRm=.
Δα11-r/31/2 SNRm=1/4.
p121+r21/2A,
SNRm=1SNRm=,
Δα=121+r21/2A SNRm=1/4.

Metrics