Abstract

A single-laser Raman differential absorption lidar (DIAL) for ozone measurements in clouds is proposed. An injection-locked XeCl excimer laser serves as the radiation source. The ozone molecule number density is calculated from the differential absorption of the anti-Stokes rotational Raman return signals from molecular nitrogen and oxygen as the on-resonance wavelength and the vibrational–rotational Raman backscattering from molecular nitrogen or oxygen as the off-resonance wavelength. Model calculations show that the main advantage of the new rotational vibrational–rotational (RVR) Raman DIAL over conventional Raman DIAL is a 70–85% reduction in the wavelength-dependent effects of cloud-particle scattering on the measured ozone concentration; furthermore the complexity of the apparatus is reduced substantially. We describe a RVR Raman DIAL setup that uses a narrow-band interference-filter polychromator as the lidar receiver. Single-laser ozone measurements in the troposphere and lower stratosphere are presented, and it is shown that on further improvement of the receiver performance, ozone measurements in clouds are attainable with the filter–polychromator approach.

© 2000 Optical Society of America

Full Article  |  PDF Article
Related Articles
Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar

Albert Ansmann, Ulla Wandinger, Maren Riebesell, Claus Weitkamp, and Walfried Michaelis
Appl. Opt. 31(33) 7113-7131 (1992)

Multiple-scattering effect on ozone retrieval from space-based differential absorption lidar measurements

Shiv R. Pal and Luc R. Bissonnette
Appl. Opt. 37(27) 6500-6510 (1998)

Remote daytime measurements of tropospheric temperature profiles with a rotational Raman lidar

J. Zeyn, W. Lahmann, and C. Weitkamp
Opt. Lett. 21(16) 1301-1303 (1996)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription