Abstract

The surface-plasmon resonance (SPR) technique is used to study the growth rate and the nature of Ag2S films formed on a silver (Ag) film exposed to an atmosphere containing 50% H2S for different times. The thickness of the Ag2S layer formed, estimated from shifts in the experimental SPR curves, showed a saturation tendency after an initial linear increase. Theoretical analysis of the curves when Ag and Ag2S are treated as two uniform layers and Ag–Ag2S as a composite layer showed that radiation damping is mainly responsible for the increase of half-width and dip reflectance, indicating that the Ag2S film formed is rough and discontinuous.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Vol. 111 of Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1988), Chap. 2.
  2. W. P. Chen, J. M. Chen, “Use of surface plasma waves for determination of the thickness and optical consatants of thin metallic films,” J. Opt. Soc. Am. 71, 189–191 (1981).
    [CrossRef]
  3. Y. Levy, M. Jurich, J. D. Swalen, “Optical properties of thin layers of SiOx,” J. Appl. Phys. 57, 2601–2605 (1985).
    [CrossRef]
  4. G. J. Ashwell, M. P. S. Roberts, “Highly selective surface plasmon resonance sensor for NO2,” Electron. Lett. 32, 2089–2091 (1996).
    [CrossRef]
  5. U. Kunz, A. Katerkamp, R. Renneberg, F. Spener, K. Cammann, “Sensing fatty acid binding protein with planar and fiber-optical surface plasmon resonance spectroscopy devices,” Sens. Actuators B 32, 149–155 (1996).
    [CrossRef]
  6. I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577–588 (1978).
    [CrossRef]
  7. D. Hornauer, H. Kapitza, H. Raether, “The dispersion relation of surface plasmons on rough surfaces,” J. Phys. D 1, L100–L102 (1974).
    [CrossRef]
  8. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Vol. 111 of Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1988), Chap. 4.
  9. E. Bennett, R. L. Peck, D. K. Burge, J. M. Bennett, “Formation and growth of tarnish on evaporated silver films,” J. Appl. Phys. 40, 3351–3360 (1969).
    [CrossRef]
  10. J. L. Stanford, “Determination of surface-film thickness from shift of optically excited surface plasma resonance,” J. Opt. Soc. Am. 60, 49–53 (1970).
    [CrossRef]
  11. R. J. Bussjager, H. A. Macleod, “Using surface plasmon resonances to test the durability of silver–copper films,” Appl. Opt. 35, 5044–5047 (1996).
    [CrossRef] [PubMed]
  12. O. S. Heavens, Optical Properties of Thin Solid Films (Butterworths Scientific, London, 1955), Chap. 4.
  13. J. M. Bennett, J. L. Stanford, E. J. Ashley, “Optical constants of silver sulfide tarnish films,” J. Opt. Soc. Am. 60, 224–232 (1970).
    [CrossRef]

1996 (3)

G. J. Ashwell, M. P. S. Roberts, “Highly selective surface plasmon resonance sensor for NO2,” Electron. Lett. 32, 2089–2091 (1996).
[CrossRef]

U. Kunz, A. Katerkamp, R. Renneberg, F. Spener, K. Cammann, “Sensing fatty acid binding protein with planar and fiber-optical surface plasmon resonance spectroscopy devices,” Sens. Actuators B 32, 149–155 (1996).
[CrossRef]

R. J. Bussjager, H. A. Macleod, “Using surface plasmon resonances to test the durability of silver–copper films,” Appl. Opt. 35, 5044–5047 (1996).
[CrossRef] [PubMed]

1985 (1)

Y. Levy, M. Jurich, J. D. Swalen, “Optical properties of thin layers of SiOx,” J. Appl. Phys. 57, 2601–2605 (1985).
[CrossRef]

1981 (1)

1978 (1)

I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577–588 (1978).
[CrossRef]

1974 (1)

D. Hornauer, H. Kapitza, H. Raether, “The dispersion relation of surface plasmons on rough surfaces,” J. Phys. D 1, L100–L102 (1974).
[CrossRef]

1970 (2)

1969 (1)

E. Bennett, R. L. Peck, D. K. Burge, J. M. Bennett, “Formation and growth of tarnish on evaporated silver films,” J. Appl. Phys. 40, 3351–3360 (1969).
[CrossRef]

Ashley, E. J.

Ashwell, G. J.

G. J. Ashwell, M. P. S. Roberts, “Highly selective surface plasmon resonance sensor for NO2,” Electron. Lett. 32, 2089–2091 (1996).
[CrossRef]

Bennett, E.

E. Bennett, R. L. Peck, D. K. Burge, J. M. Bennett, “Formation and growth of tarnish on evaporated silver films,” J. Appl. Phys. 40, 3351–3360 (1969).
[CrossRef]

Bennett, J. M.

J. M. Bennett, J. L. Stanford, E. J. Ashley, “Optical constants of silver sulfide tarnish films,” J. Opt. Soc. Am. 60, 224–232 (1970).
[CrossRef]

E. Bennett, R. L. Peck, D. K. Burge, J. M. Bennett, “Formation and growth of tarnish on evaporated silver films,” J. Appl. Phys. 40, 3351–3360 (1969).
[CrossRef]

Burge, D. K.

E. Bennett, R. L. Peck, D. K. Burge, J. M. Bennett, “Formation and growth of tarnish on evaporated silver films,” J. Appl. Phys. 40, 3351–3360 (1969).
[CrossRef]

Bussjager, R. J.

Cammann, K.

U. Kunz, A. Katerkamp, R. Renneberg, F. Spener, K. Cammann, “Sensing fatty acid binding protein with planar and fiber-optical surface plasmon resonance spectroscopy devices,” Sens. Actuators B 32, 149–155 (1996).
[CrossRef]

Chen, J. M.

Chen, W. P.

Heavens, O. S.

O. S. Heavens, Optical Properties of Thin Solid Films (Butterworths Scientific, London, 1955), Chap. 4.

Hornauer, D.

D. Hornauer, H. Kapitza, H. Raether, “The dispersion relation of surface plasmons on rough surfaces,” J. Phys. D 1, L100–L102 (1974).
[CrossRef]

Jurich, M.

Y. Levy, M. Jurich, J. D. Swalen, “Optical properties of thin layers of SiOx,” J. Appl. Phys. 57, 2601–2605 (1985).
[CrossRef]

Kapitza, H.

D. Hornauer, H. Kapitza, H. Raether, “The dispersion relation of surface plasmons on rough surfaces,” J. Phys. D 1, L100–L102 (1974).
[CrossRef]

Katerkamp, A.

U. Kunz, A. Katerkamp, R. Renneberg, F. Spener, K. Cammann, “Sensing fatty acid binding protein with planar and fiber-optical surface plasmon resonance spectroscopy devices,” Sens. Actuators B 32, 149–155 (1996).
[CrossRef]

Kunz, U.

U. Kunz, A. Katerkamp, R. Renneberg, F. Spener, K. Cammann, “Sensing fatty acid binding protein with planar and fiber-optical surface plasmon resonance spectroscopy devices,” Sens. Actuators B 32, 149–155 (1996).
[CrossRef]

Levy, Y.

Y. Levy, M. Jurich, J. D. Swalen, “Optical properties of thin layers of SiOx,” J. Appl. Phys. 57, 2601–2605 (1985).
[CrossRef]

Macleod, H. A.

Peck, R. L.

E. Bennett, R. L. Peck, D. K. Burge, J. M. Bennett, “Formation and growth of tarnish on evaporated silver films,” J. Appl. Phys. 40, 3351–3360 (1969).
[CrossRef]

Pockrand, I.

I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577–588 (1978).
[CrossRef]

Raether, H.

D. Hornauer, H. Kapitza, H. Raether, “The dispersion relation of surface plasmons on rough surfaces,” J. Phys. D 1, L100–L102 (1974).
[CrossRef]

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Vol. 111 of Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1988), Chap. 4.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Vol. 111 of Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1988), Chap. 2.

Renneberg, R.

U. Kunz, A. Katerkamp, R. Renneberg, F. Spener, K. Cammann, “Sensing fatty acid binding protein with planar and fiber-optical surface plasmon resonance spectroscopy devices,” Sens. Actuators B 32, 149–155 (1996).
[CrossRef]

Roberts, M. P. S.

G. J. Ashwell, M. P. S. Roberts, “Highly selective surface plasmon resonance sensor for NO2,” Electron. Lett. 32, 2089–2091 (1996).
[CrossRef]

Spener, F.

U. Kunz, A. Katerkamp, R. Renneberg, F. Spener, K. Cammann, “Sensing fatty acid binding protein with planar and fiber-optical surface plasmon resonance spectroscopy devices,” Sens. Actuators B 32, 149–155 (1996).
[CrossRef]

Stanford, J. L.

Swalen, J. D.

Y. Levy, M. Jurich, J. D. Swalen, “Optical properties of thin layers of SiOx,” J. Appl. Phys. 57, 2601–2605 (1985).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

G. J. Ashwell, M. P. S. Roberts, “Highly selective surface plasmon resonance sensor for NO2,” Electron. Lett. 32, 2089–2091 (1996).
[CrossRef]

J. Appl. Phys. (2)

E. Bennett, R. L. Peck, D. K. Burge, J. M. Bennett, “Formation and growth of tarnish on evaporated silver films,” J. Appl. Phys. 40, 3351–3360 (1969).
[CrossRef]

Y. Levy, M. Jurich, J. D. Swalen, “Optical properties of thin layers of SiOx,” J. Appl. Phys. 57, 2601–2605 (1985).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Phys. D (1)

D. Hornauer, H. Kapitza, H. Raether, “The dispersion relation of surface plasmons on rough surfaces,” J. Phys. D 1, L100–L102 (1974).
[CrossRef]

Sens. Actuators B (1)

U. Kunz, A. Katerkamp, R. Renneberg, F. Spener, K. Cammann, “Sensing fatty acid binding protein with planar and fiber-optical surface plasmon resonance spectroscopy devices,” Sens. Actuators B 32, 149–155 (1996).
[CrossRef]

Surf. Sci. (1)

I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577–588 (1978).
[CrossRef]

Other (3)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Vol. 111 of Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1988), Chap. 2.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Vol. 111 of Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1988), Chap. 4.

O. S. Heavens, Optical Properties of Thin Solid Films (Butterworths Scientific, London, 1955), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

SPR curves for a Ag film (450 Å) exposed to an atmosphere containing 50% H2S for different exposure times.

Fig. 2
Fig. 2

Experimental and theoretical SPR curves for the unexposed Ag film. The parameters used for calculations are given in Table 1.

Fig. 3
Fig. 3

Thickness of Ag2S layer, d 2, estimated from the present curve and that of Bussjager and Macleod with Eq. (16) and with the data given in Table 1. d 1 in Eq. (16) is d 1 (unexposed) - d 2.

Fig. 4
Fig. 4

Variation of the experimental and the calculated values of (a) R min and (b) θ1/2 with exposure time. For calculations by the uniform double-layer model the various parameters reported in Table 1 and in Fig. 3 are used.

Fig. 5
Fig. 5

(a) Variation of the calculated effective values of ∊ e ′ and ∊ e ″ of the composite Ag–Ag2S layer with exposure time. (b) Variation of the internal and the radiation damping terms calculated by the composite-layer and the uniform double-layer models, with exposure time. The fitting parameters for the composite-layer model, R min and θ1/2, are given in Figs. 4(a) and 4(b), respectively. The measured values of θATR for various exposure times given in Fig. 1, the values of Γ ei given in Fig. 5(b), and the relevant parameters reported in Table 1 were used for the calculation of ∊ e ′ and ∊ e ″. The values for internal and radiation damping calculated by the uniform double-layer model are evaluated by use of the various parameters reported in Table 1 and in Fig. 3.

Tables (1)

Tables Icon

Table 1 Thickness d1 and Dielectric Constant ∊1 of Ag Film Estimated by Means of Fitting the SPR Curve of Unexposed Ag Film Reported in Fig. 2 and by Bussjager and Macleod a,b

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

2π/λnp sin θATR=Reksp,
ksp=k0+kr,
k0=2πλ131+31/2=2πλ131+31/21+i 13211+3,
kr=r01 exp2ik1d122πλ131+33/213-1,
k1=12πλ2-k021/2,
r01=a2-i02a2+i02,
0=np2,
a2=-10-1-0.
2πλ np sin θATR2πλ131+31/2.
rik=kzii-kzkkkzii+kzkk,
kzi=2π/λi-0 sin2 θ1/2,
R013=r01+r13 exp2ikz1d11+r01r13 exp2ikz1d12,
R=1-4ΓiΓrkx-Rek0+kr2+Γi+Γr2,
R=1-4ΓiΓr2πλ npsin θ-sin θATR2+Γi+Γr2,
Γi=Imk0,
Γr=Imkr.
R0123=r01+r123 exp2ikz1d11+r01r123 exp2ikz1d12,
r123=r12+r23 exp2ikz2d21+r12r23 exp2ikz2d2.
kspm=k0+kr+kc1+kc2+krc,
kc1=2πλ2-32131+32×2-13-1-13-1/22πd2λ,
kc2=kc112kc1Rek02 232-2233-2+1+3-3-12 i 11,
krc=krkc1Rek0-13+233-2+223.
Γim=Imk0+kc1+kc2,
Γrm=Imkr+krc.

Metrics