Abstract

We used a variation of the generalized scidar (scintillation detection and ranging) technique to examine the temporal coherence of turbulent patterns at different altitudes in the atmosphere above Palomar Observatory. This enables us to test the validity of a frozen turbulence hypothesis in the local reference frame of the moving atmosphere. The data set analyzed here contains three turbulent patterns, each at a different altitude, which remain internally coherent over time scales of 0.28–0.41 s. This measurement is significant, because it is made on a 5-m aperture, allowing moving patterns to be tracked over time scales longer than their own lifetimes.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Fried, “Optical resolution through a randomly inhomogeneous medium for very long and very short exposures,” J. Opt. Soc. Am. 56, 1372–1379 (1966).
    [CrossRef]
  2. G. Taylor, “The spectrum of turbulence,” Proc. R. Soc. London 164, 476–490 (1938).
    [CrossRef]
  3. F. Rigaut, G. Rousset, P. Kern, J. C. Fontanella, J. P. Gaffard, F. Merkle, P. Léna, “Adaptive optics on a 3.6 m telescope: results and performances,” Astron. Astrophys. 250, 280–290 (1991).
  4. M. B. Jorgenson, G. J. M. Aitken, “Wavefront prediction for adaptive optics,” in Proceedings of the ESO Satellite Conference on Active and Adaptive Optics, F. Merkle, ed. (European Southern Observatory, Garching, Germany, 1993), Vol. 48, pp. 143–148.
  5. C. Schwartz, G. Baum, E. N. Ribak, “Turbulence-degraded wave fronts as fractal surfaces,” J. Opt. Soc. Am. A 11, 444–451 (1994).
    [CrossRef]
  6. P. Léna, “Astrophysics with adaptive optics: results and challenges,” in Adaptive Optics for AstronomyD. Alloin, J. M. Mariotti, eds. (Kluwer Academic, Boston, Mass., 1994), pp. 321–332.
    [CrossRef]
  7. J. Vernin, F. Roddier, “Experimental determination of two-dimensional spatiotemporal power spectra of stellar light scintillation. Evidence for a multilayer structure of the air turbulence in the upper troposphere,” J. Opt. Soc. Am. 63, 270–273 (1973).
    [CrossRef]
  8. A. Rocca, F. Roddier, J. Vernin, “Detection of atmospheric turbulent layers by spatiotemporal and spatioangular correlation measurements of stellar-light scintillation,” J. Opt. Soc. Am. 64, 1000–1004 (1974).
    [CrossRef]
  9. A. Fuchs, M. Tallon, J. Vernin, “Folding-up of the vertical atmospheric turbulence profile using an optical technique of movable observing plane,” in Atmospheric Propagation and Remote Sensing III, W. A. Flood, W. B. Miller, eds., Proc. SPIE2222, 682–692 (1994).
    [CrossRef]
  10. V. A. Klückers, N. J. Wooder, M. A. Adcock, T. W. Nicholls, J. C. Dainty, “Results from SCIDAR experiments,” in Image Propagation through the Atmosphere, C. Dainty, L. R. Bissonnette, eds., Proc. SPIE2828, 234–243 (1996).
    [CrossRef]
  11. R. Avila, J. Vernin, E. Masciadri, “Whole atmospheric- turbulence profiling with generalized scidar,” Appl. Opt. 36, 7898–7905 (1997).
    [CrossRef]
  12. A. Fuchs, M. Tallon, J. Vernin, “Focusing on a turbulent layer: principle of the ‘generalized SCIDAR,’” Publ. Astron. Soc. Pac. 110, 86–91 (1998).
    [CrossRef]
  13. A. N. Kolmogorov, “Dissipation of energy in locally isotropic turbulence,” Dokl. Akad. Nauk SSSR 32, 16–18 (1941).
  14. V. A. Klückers, N. J. Wooder, T. W. Nicholls, M. J. Adcock, I. Munro, J. C. Dainty, “Profiling of atmospheric turbulence strength and velocity using a generalised SCIDAR technique,” Astron. Astrophys. Suppl. Ser. 130, 141–155 (1998).
    [CrossRef]
  15. J. L. Caccia, M. Azouit, J. Vernin, “Wind and CN2 profiling by single-star scintillation analysis,“ Appl. Opt. 26, 1288–1294 (1987).
  16. M. Schöck, E. J. Spillar, “Measuring wind speeds and turbulence with a wave-front sensor,” Opt. Lett. 23, 150–152 (1998).
    [CrossRef]
  17. P. J. Gardner, M. C. Roggemann, B. M. Welsh, “Quantification of frozen flow properties for a turbulent mixing layer of helium and nitrogen gas,” in Image Propagation through the Atmosphere, C. Dainty, L. R. Bissonnette, eds., Proc. SPIE2828, 256–265 (1996).
    [CrossRef]
  18. E. Gendron, P. Léna, “Single layer atmospheric turbulence demonstrated by adaptive optics observations,” Astrophys. Space Sci. 239, 221–228 (1996).
    [CrossRef]
  19. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (Israel Program for Scientific Translations, Jerusalem, 1971).

1998 (3)

A. Fuchs, M. Tallon, J. Vernin, “Focusing on a turbulent layer: principle of the ‘generalized SCIDAR,’” Publ. Astron. Soc. Pac. 110, 86–91 (1998).
[CrossRef]

V. A. Klückers, N. J. Wooder, T. W. Nicholls, M. J. Adcock, I. Munro, J. C. Dainty, “Profiling of atmospheric turbulence strength and velocity using a generalised SCIDAR technique,” Astron. Astrophys. Suppl. Ser. 130, 141–155 (1998).
[CrossRef]

M. Schöck, E. J. Spillar, “Measuring wind speeds and turbulence with a wave-front sensor,” Opt. Lett. 23, 150–152 (1998).
[CrossRef]

1997 (1)

1996 (1)

E. Gendron, P. Léna, “Single layer atmospheric turbulence demonstrated by adaptive optics observations,” Astrophys. Space Sci. 239, 221–228 (1996).
[CrossRef]

1994 (1)

1991 (1)

F. Rigaut, G. Rousset, P. Kern, J. C. Fontanella, J. P. Gaffard, F. Merkle, P. Léna, “Adaptive optics on a 3.6 m telescope: results and performances,” Astron. Astrophys. 250, 280–290 (1991).

1987 (1)

1974 (1)

1973 (1)

1966 (1)

1941 (1)

A. N. Kolmogorov, “Dissipation of energy in locally isotropic turbulence,” Dokl. Akad. Nauk SSSR 32, 16–18 (1941).

1938 (1)

G. Taylor, “The spectrum of turbulence,” Proc. R. Soc. London 164, 476–490 (1938).
[CrossRef]

Adcock, M. A.

V. A. Klückers, N. J. Wooder, M. A. Adcock, T. W. Nicholls, J. C. Dainty, “Results from SCIDAR experiments,” in Image Propagation through the Atmosphere, C. Dainty, L. R. Bissonnette, eds., Proc. SPIE2828, 234–243 (1996).
[CrossRef]

Adcock, M. J.

V. A. Klückers, N. J. Wooder, T. W. Nicholls, M. J. Adcock, I. Munro, J. C. Dainty, “Profiling of atmospheric turbulence strength and velocity using a generalised SCIDAR technique,” Astron. Astrophys. Suppl. Ser. 130, 141–155 (1998).
[CrossRef]

Aitken, G. J. M.

M. B. Jorgenson, G. J. M. Aitken, “Wavefront prediction for adaptive optics,” in Proceedings of the ESO Satellite Conference on Active and Adaptive Optics, F. Merkle, ed. (European Southern Observatory, Garching, Germany, 1993), Vol. 48, pp. 143–148.

Avila, R.

Azouit, M.

Baum, G.

Caccia, J. L.

Dainty, J. C.

V. A. Klückers, N. J. Wooder, T. W. Nicholls, M. J. Adcock, I. Munro, J. C. Dainty, “Profiling of atmospheric turbulence strength and velocity using a generalised SCIDAR technique,” Astron. Astrophys. Suppl. Ser. 130, 141–155 (1998).
[CrossRef]

V. A. Klückers, N. J. Wooder, M. A. Adcock, T. W. Nicholls, J. C. Dainty, “Results from SCIDAR experiments,” in Image Propagation through the Atmosphere, C. Dainty, L. R. Bissonnette, eds., Proc. SPIE2828, 234–243 (1996).
[CrossRef]

Fontanella, J. C.

F. Rigaut, G. Rousset, P. Kern, J. C. Fontanella, J. P. Gaffard, F. Merkle, P. Léna, “Adaptive optics on a 3.6 m telescope: results and performances,” Astron. Astrophys. 250, 280–290 (1991).

Fried, D. L.

Fuchs, A.

A. Fuchs, M. Tallon, J. Vernin, “Focusing on a turbulent layer: principle of the ‘generalized SCIDAR,’” Publ. Astron. Soc. Pac. 110, 86–91 (1998).
[CrossRef]

A. Fuchs, M. Tallon, J. Vernin, “Folding-up of the vertical atmospheric turbulence profile using an optical technique of movable observing plane,” in Atmospheric Propagation and Remote Sensing III, W. A. Flood, W. B. Miller, eds., Proc. SPIE2222, 682–692 (1994).
[CrossRef]

Gaffard, J. P.

F. Rigaut, G. Rousset, P. Kern, J. C. Fontanella, J. P. Gaffard, F. Merkle, P. Léna, “Adaptive optics on a 3.6 m telescope: results and performances,” Astron. Astrophys. 250, 280–290 (1991).

Gardner, P. J.

P. J. Gardner, M. C. Roggemann, B. M. Welsh, “Quantification of frozen flow properties for a turbulent mixing layer of helium and nitrogen gas,” in Image Propagation through the Atmosphere, C. Dainty, L. R. Bissonnette, eds., Proc. SPIE2828, 256–265 (1996).
[CrossRef]

Gendron, E.

E. Gendron, P. Léna, “Single layer atmospheric turbulence demonstrated by adaptive optics observations,” Astrophys. Space Sci. 239, 221–228 (1996).
[CrossRef]

Jorgenson, M. B.

M. B. Jorgenson, G. J. M. Aitken, “Wavefront prediction for adaptive optics,” in Proceedings of the ESO Satellite Conference on Active and Adaptive Optics, F. Merkle, ed. (European Southern Observatory, Garching, Germany, 1993), Vol. 48, pp. 143–148.

Kern, P.

F. Rigaut, G. Rousset, P. Kern, J. C. Fontanella, J. P. Gaffard, F. Merkle, P. Léna, “Adaptive optics on a 3.6 m telescope: results and performances,” Astron. Astrophys. 250, 280–290 (1991).

Klückers, V. A.

V. A. Klückers, N. J. Wooder, T. W. Nicholls, M. J. Adcock, I. Munro, J. C. Dainty, “Profiling of atmospheric turbulence strength and velocity using a generalised SCIDAR technique,” Astron. Astrophys. Suppl. Ser. 130, 141–155 (1998).
[CrossRef]

V. A. Klückers, N. J. Wooder, M. A. Adcock, T. W. Nicholls, J. C. Dainty, “Results from SCIDAR experiments,” in Image Propagation through the Atmosphere, C. Dainty, L. R. Bissonnette, eds., Proc. SPIE2828, 234–243 (1996).
[CrossRef]

Kolmogorov, A. N.

A. N. Kolmogorov, “Dissipation of energy in locally isotropic turbulence,” Dokl. Akad. Nauk SSSR 32, 16–18 (1941).

Léna, P.

E. Gendron, P. Léna, “Single layer atmospheric turbulence demonstrated by adaptive optics observations,” Astrophys. Space Sci. 239, 221–228 (1996).
[CrossRef]

F. Rigaut, G. Rousset, P. Kern, J. C. Fontanella, J. P. Gaffard, F. Merkle, P. Léna, “Adaptive optics on a 3.6 m telescope: results and performances,” Astron. Astrophys. 250, 280–290 (1991).

P. Léna, “Astrophysics with adaptive optics: results and challenges,” in Adaptive Optics for AstronomyD. Alloin, J. M. Mariotti, eds. (Kluwer Academic, Boston, Mass., 1994), pp. 321–332.
[CrossRef]

Masciadri, E.

Merkle, F.

F. Rigaut, G. Rousset, P. Kern, J. C. Fontanella, J. P. Gaffard, F. Merkle, P. Léna, “Adaptive optics on a 3.6 m telescope: results and performances,” Astron. Astrophys. 250, 280–290 (1991).

Munro, I.

V. A. Klückers, N. J. Wooder, T. W. Nicholls, M. J. Adcock, I. Munro, J. C. Dainty, “Profiling of atmospheric turbulence strength and velocity using a generalised SCIDAR technique,” Astron. Astrophys. Suppl. Ser. 130, 141–155 (1998).
[CrossRef]

Nicholls, T. W.

V. A. Klückers, N. J. Wooder, T. W. Nicholls, M. J. Adcock, I. Munro, J. C. Dainty, “Profiling of atmospheric turbulence strength and velocity using a generalised SCIDAR technique,” Astron. Astrophys. Suppl. Ser. 130, 141–155 (1998).
[CrossRef]

V. A. Klückers, N. J. Wooder, M. A. Adcock, T. W. Nicholls, J. C. Dainty, “Results from SCIDAR experiments,” in Image Propagation through the Atmosphere, C. Dainty, L. R. Bissonnette, eds., Proc. SPIE2828, 234–243 (1996).
[CrossRef]

Ribak, E. N.

Rigaut, F.

F. Rigaut, G. Rousset, P. Kern, J. C. Fontanella, J. P. Gaffard, F. Merkle, P. Léna, “Adaptive optics on a 3.6 m telescope: results and performances,” Astron. Astrophys. 250, 280–290 (1991).

Rocca, A.

Roddier, F.

Roggemann, M. C.

P. J. Gardner, M. C. Roggemann, B. M. Welsh, “Quantification of frozen flow properties for a turbulent mixing layer of helium and nitrogen gas,” in Image Propagation through the Atmosphere, C. Dainty, L. R. Bissonnette, eds., Proc. SPIE2828, 256–265 (1996).
[CrossRef]

Rousset, G.

F. Rigaut, G. Rousset, P. Kern, J. C. Fontanella, J. P. Gaffard, F. Merkle, P. Léna, “Adaptive optics on a 3.6 m telescope: results and performances,” Astron. Astrophys. 250, 280–290 (1991).

Schöck, M.

Schwartz, C.

Spillar, E. J.

Tallon, M.

A. Fuchs, M. Tallon, J. Vernin, “Focusing on a turbulent layer: principle of the ‘generalized SCIDAR,’” Publ. Astron. Soc. Pac. 110, 86–91 (1998).
[CrossRef]

A. Fuchs, M. Tallon, J. Vernin, “Folding-up of the vertical atmospheric turbulence profile using an optical technique of movable observing plane,” in Atmospheric Propagation and Remote Sensing III, W. A. Flood, W. B. Miller, eds., Proc. SPIE2222, 682–692 (1994).
[CrossRef]

Tatarskii, V. I.

V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (Israel Program for Scientific Translations, Jerusalem, 1971).

Taylor, G.

G. Taylor, “The spectrum of turbulence,” Proc. R. Soc. London 164, 476–490 (1938).
[CrossRef]

Vernin, J.

Welsh, B. M.

P. J. Gardner, M. C. Roggemann, B. M. Welsh, “Quantification of frozen flow properties for a turbulent mixing layer of helium and nitrogen gas,” in Image Propagation through the Atmosphere, C. Dainty, L. R. Bissonnette, eds., Proc. SPIE2828, 256–265 (1996).
[CrossRef]

Wooder, N. J.

V. A. Klückers, N. J. Wooder, T. W. Nicholls, M. J. Adcock, I. Munro, J. C. Dainty, “Profiling of atmospheric turbulence strength and velocity using a generalised SCIDAR technique,” Astron. Astrophys. Suppl. Ser. 130, 141–155 (1998).
[CrossRef]

V. A. Klückers, N. J. Wooder, M. A. Adcock, T. W. Nicholls, J. C. Dainty, “Results from SCIDAR experiments,” in Image Propagation through the Atmosphere, C. Dainty, L. R. Bissonnette, eds., Proc. SPIE2828, 234–243 (1996).
[CrossRef]

Appl. Opt. (2)

Astron. Astrophys. (1)

F. Rigaut, G. Rousset, P. Kern, J. C. Fontanella, J. P. Gaffard, F. Merkle, P. Léna, “Adaptive optics on a 3.6 m telescope: results and performances,” Astron. Astrophys. 250, 280–290 (1991).

Astron. Astrophys. Suppl. Ser. (1)

V. A. Klückers, N. J. Wooder, T. W. Nicholls, M. J. Adcock, I. Munro, J. C. Dainty, “Profiling of atmospheric turbulence strength and velocity using a generalised SCIDAR technique,” Astron. Astrophys. Suppl. Ser. 130, 141–155 (1998).
[CrossRef]

Astrophys. Space Sci. (1)

E. Gendron, P. Léna, “Single layer atmospheric turbulence demonstrated by adaptive optics observations,” Astrophys. Space Sci. 239, 221–228 (1996).
[CrossRef]

Dokl. Akad. Nauk SSSR (1)

A. N. Kolmogorov, “Dissipation of energy in locally isotropic turbulence,” Dokl. Akad. Nauk SSSR 32, 16–18 (1941).

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (1)

Opt. Lett. (1)

Proc. R. Soc. London (1)

G. Taylor, “The spectrum of turbulence,” Proc. R. Soc. London 164, 476–490 (1938).
[CrossRef]

Publ. Astron. Soc. Pac. (1)

A. Fuchs, M. Tallon, J. Vernin, “Focusing on a turbulent layer: principle of the ‘generalized SCIDAR,’” Publ. Astron. Soc. Pac. 110, 86–91 (1998).
[CrossRef]

Other (6)

P. J. Gardner, M. C. Roggemann, B. M. Welsh, “Quantification of frozen flow properties for a turbulent mixing layer of helium and nitrogen gas,” in Image Propagation through the Atmosphere, C. Dainty, L. R. Bissonnette, eds., Proc. SPIE2828, 256–265 (1996).
[CrossRef]

M. B. Jorgenson, G. J. M. Aitken, “Wavefront prediction for adaptive optics,” in Proceedings of the ESO Satellite Conference on Active and Adaptive Optics, F. Merkle, ed. (European Southern Observatory, Garching, Germany, 1993), Vol. 48, pp. 143–148.

P. Léna, “Astrophysics with adaptive optics: results and challenges,” in Adaptive Optics for AstronomyD. Alloin, J. M. Mariotti, eds. (Kluwer Academic, Boston, Mass., 1994), pp. 321–332.
[CrossRef]

A. Fuchs, M. Tallon, J. Vernin, “Folding-up of the vertical atmospheric turbulence profile using an optical technique of movable observing plane,” in Atmospheric Propagation and Remote Sensing III, W. A. Flood, W. B. Miller, eds., Proc. SPIE2222, 682–692 (1994).
[CrossRef]

V. A. Klückers, N. J. Wooder, M. A. Adcock, T. W. Nicholls, J. C. Dainty, “Results from SCIDAR experiments,” in Image Propagation through the Atmosphere, C. Dainty, L. R. Bissonnette, eds., Proc. SPIE2828, 234–243 (1996).
[CrossRef]

V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (Israel Program for Scientific Translations, Jerusalem, 1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic observing geometry (not to scale). The marginal rays of both stellar images are shown, and the illumination patterns are shown as they appear in the observation plane, which is conjugate to the detector.

Fig. 2
Fig. 2

Sample digitized frame, containing two out-of-focus stellar images.

Fig. 3
Fig. 3

Slices of B(ρ, τ) at τ = 0.07, 0.13, 0.20, and 0.27 s. Cross is origin, where zero-velocity peak has been filtered out. Each slice measures 310 cm × 310 cm.

Fig. 4
Fig. 4

Fig. 4. L B F (v, ϕ), the convective autocorrelation function derived from B F (ρ, τ). ϕ measured in degrees N of E.

Fig. 5
Fig. 5

B F,1(τ), filtered correlation function for 3-m/s pattern. Dotted curve, exponential fit, with τdecay,1 = 0.41 s.

Fig. 6
Fig. 6

B F,2(τ), filtered correlation function for 8-m/s pattern. Dotted curve, exponential fit, with τdecay,2 = 0.28 s.

Fig. 7
Fig. 7

B χ(0, τ), unfiltered correlation function for zero-velocity pattern, with no error estimates. Dotted curve, exponential fit, with τdecay,0 = 0.31 s.

Tables (1)

Tables Icon

Table 1 Measured Parameters of Turbulent Patterns

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Bχ(ρ, τ) = χr, tχr + ρ, t + τ,
Cχρ, τ = χAr, tχBr + ρ, t + τ,
Ffτ=0,  |fτ|  1.875 s-11,  |fτ|  1.875 s-1.
LBFv, ϕ=1T0TBFv cosϕτ, v sinϕτ, τdτ.
BF,iτ=BFvi cosϕiτ,vi sin(ϕi)τ, τ,  i=1, 2.
σBF,i2τ=17n=17BFvi cos(ϕi+nπ/4)τ, vi sinϕi+nπ/4τ, τ2
hi=ρoff, i/θ,
τdecaylvll(l)1/3=l2/31/3,
(L0)1/3v,
τdecay  l2L01/3v.

Metrics