Abstract

We describe a novel optical sensor based on the Faraday effect for measuring ac. The sensing element is a piece of material of high Verdet constant placed between polarizers. When the angle between the polarizers differs by 45°, a signal of twice the frequency of the ac is generated—in addition to the usual signal with the same frequency as the current. The quotient of these two signals allows a normalized output to be obtained that is proportional to the amplitude of the current. Experimental results demonstrating the practicality of the procedure are presented.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Papp, H. Harm, “Magneto-optical current transformer. 1: principles,” Appl. Opt. 19, 3729–3734 (1980).
    [CrossRef] [PubMed]
  2. A. M. Smith, “Optical fibers for current measurement applications,” Opt. Laser Technol. 2, 25–29 (1980).
    [CrossRef]
  3. A. J. Rogers, “Optical fiber current measurement,” in Optical Fiber Sensor Technology, K. T. V. Grattan, B. T. Megitt, eds. (Chapman & Hall, London, 1995), pp. 421–439.
    [CrossRef]
  4. Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
    [CrossRef]
  5. F. Maystre, A. Bertholds, “Magneto-optic current sensor using a helical Fabry–Perot resonator,” Opt. Lett. 14, 587–592 (1989).
    [CrossRef] [PubMed]
  6. G. Frosio, R. Dänlicker, “Reciprocal reflection interferometer for a fiber-optic Faraday current sensor,” Appl. Opt. 33, 6111–6122 (1994).
    [CrossRef] [PubMed]
  7. A. D. Kersey, D. A. Jackson, “Current sensing utilizing heterodyne detection of the Faraday effect in single-mode optical fiber,” J. Lightwave Technol. 4, 640–644 (1986).
    [CrossRef]
  8. H. Lin, W.-W. Lin, M.-H. Chen, S.-C. Huang, “Vibration insensitive optical fiber current sensor with a modified reflection interferometer,” Opt. Eng. 38, 1722–1729 (1999).
    [CrossRef]
  9. P. Akhavan Leilabady, A. P. Wayte, M. Berwick, J. D. C. Jones, D. A. Jackson, “A pseudo-reciprocal fiber-optic Faraday rotation sensor: current measurement and data communication applications,” Opt. Commun. 59, 173–176 (1986).
  10. J. A. Ferrari, A. Dubra, A. Arnaud, D. Perciante, “Current sensor using heterodyne detection,” Appl. Opt. 38, 2808–2811 (1999).
    [CrossRef]
  11. P. Niewczas, A. Cruden, W. C. Michie, W. I. Madden, J. R. McDonald, I. Andonovic, “Vibration compensation technique for an optical current transducer,” Opt. Eng. 38, 1708–1714 (1999).
    [CrossRef]
  12. C. R. Webster, R. T. Menzies, E. D. Hinkley, “Principles of harmonic detection,” in Laser Remote Chemical Analysis, R. M. Measures, ed. (Wiley, New York, 1988), pp. 207–214.

1999

H. Lin, W.-W. Lin, M.-H. Chen, S.-C. Huang, “Vibration insensitive optical fiber current sensor with a modified reflection interferometer,” Opt. Eng. 38, 1722–1729 (1999).
[CrossRef]

J. A. Ferrari, A. Dubra, A. Arnaud, D. Perciante, “Current sensor using heterodyne detection,” Appl. Opt. 38, 2808–2811 (1999).
[CrossRef]

P. Niewczas, A. Cruden, W. C. Michie, W. I. Madden, J. R. McDonald, I. Andonovic, “Vibration compensation technique for an optical current transducer,” Opt. Eng. 38, 1708–1714 (1999).
[CrossRef]

1995

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

1994

1989

1986

A. D. Kersey, D. A. Jackson, “Current sensing utilizing heterodyne detection of the Faraday effect in single-mode optical fiber,” J. Lightwave Technol. 4, 640–644 (1986).
[CrossRef]

P. Akhavan Leilabady, A. P. Wayte, M. Berwick, J. D. C. Jones, D. A. Jackson, “A pseudo-reciprocal fiber-optic Faraday rotation sensor: current measurement and data communication applications,” Opt. Commun. 59, 173–176 (1986).

1980

A. Papp, H. Harm, “Magneto-optical current transformer. 1: principles,” Appl. Opt. 19, 3729–3734 (1980).
[CrossRef] [PubMed]

A. M. Smith, “Optical fibers for current measurement applications,” Opt. Laser Technol. 2, 25–29 (1980).
[CrossRef]

Akhavan Leilabady, P.

P. Akhavan Leilabady, A. P. Wayte, M. Berwick, J. D. C. Jones, D. A. Jackson, “A pseudo-reciprocal fiber-optic Faraday rotation sensor: current measurement and data communication applications,” Opt. Commun. 59, 173–176 (1986).

Andonovic, I.

P. Niewczas, A. Cruden, W. C. Michie, W. I. Madden, J. R. McDonald, I. Andonovic, “Vibration compensation technique for an optical current transducer,” Opt. Eng. 38, 1708–1714 (1999).
[CrossRef]

Arnaud, A.

Bertholds, A.

Berwick, M.

P. Akhavan Leilabady, A. P. Wayte, M. Berwick, J. D. C. Jones, D. A. Jackson, “A pseudo-reciprocal fiber-optic Faraday rotation sensor: current measurement and data communication applications,” Opt. Commun. 59, 173–176 (1986).

Chen, M.-H.

H. Lin, W.-W. Lin, M.-H. Chen, S.-C. Huang, “Vibration insensitive optical fiber current sensor with a modified reflection interferometer,” Opt. Eng. 38, 1722–1729 (1999).
[CrossRef]

Cruden, A.

P. Niewczas, A. Cruden, W. C. Michie, W. I. Madden, J. R. McDonald, I. Andonovic, “Vibration compensation technique for an optical current transducer,” Opt. Eng. 38, 1708–1714 (1999).
[CrossRef]

Dänlicker, R.

Dubra, A.

Ferrari, J. A.

Frosio, G.

Grattan, K. T. V.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Harm, H.

Hinkley, E. D.

C. R. Webster, R. T. Menzies, E. D. Hinkley, “Principles of harmonic detection,” in Laser Remote Chemical Analysis, R. M. Measures, ed. (Wiley, New York, 1988), pp. 207–214.

Huang, S.-C.

H. Lin, W.-W. Lin, M.-H. Chen, S.-C. Huang, “Vibration insensitive optical fiber current sensor with a modified reflection interferometer,” Opt. Eng. 38, 1722–1729 (1999).
[CrossRef]

Jackson, D. A.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

P. Akhavan Leilabady, A. P. Wayte, M. Berwick, J. D. C. Jones, D. A. Jackson, “A pseudo-reciprocal fiber-optic Faraday rotation sensor: current measurement and data communication applications,” Opt. Commun. 59, 173–176 (1986).

A. D. Kersey, D. A. Jackson, “Current sensing utilizing heterodyne detection of the Faraday effect in single-mode optical fiber,” J. Lightwave Technol. 4, 640–644 (1986).
[CrossRef]

Jones, J. D. C.

P. Akhavan Leilabady, A. P. Wayte, M. Berwick, J. D. C. Jones, D. A. Jackson, “A pseudo-reciprocal fiber-optic Faraday rotation sensor: current measurement and data communication applications,” Opt. Commun. 59, 173–176 (1986).

Kersey, A. D.

A. D. Kersey, D. A. Jackson, “Current sensing utilizing heterodyne detection of the Faraday effect in single-mode optical fiber,” J. Lightwave Technol. 4, 640–644 (1986).
[CrossRef]

Lin, H.

H. Lin, W.-W. Lin, M.-H. Chen, S.-C. Huang, “Vibration insensitive optical fiber current sensor with a modified reflection interferometer,” Opt. Eng. 38, 1722–1729 (1999).
[CrossRef]

Lin, W.-W.

H. Lin, W.-W. Lin, M.-H. Chen, S.-C. Huang, “Vibration insensitive optical fiber current sensor with a modified reflection interferometer,” Opt. Eng. 38, 1722–1729 (1999).
[CrossRef]

Madden, W. I.

P. Niewczas, A. Cruden, W. C. Michie, W. I. Madden, J. R. McDonald, I. Andonovic, “Vibration compensation technique for an optical current transducer,” Opt. Eng. 38, 1708–1714 (1999).
[CrossRef]

Maystre, F.

McDonald, J. R.

P. Niewczas, A. Cruden, W. C. Michie, W. I. Madden, J. R. McDonald, I. Andonovic, “Vibration compensation technique for an optical current transducer,” Opt. Eng. 38, 1708–1714 (1999).
[CrossRef]

Menzies, R. T.

C. R. Webster, R. T. Menzies, E. D. Hinkley, “Principles of harmonic detection,” in Laser Remote Chemical Analysis, R. M. Measures, ed. (Wiley, New York, 1988), pp. 207–214.

Michie, W. C.

P. Niewczas, A. Cruden, W. C. Michie, W. I. Madden, J. R. McDonald, I. Andonovic, “Vibration compensation technique for an optical current transducer,” Opt. Eng. 38, 1708–1714 (1999).
[CrossRef]

Niewczas, P.

P. Niewczas, A. Cruden, W. C. Michie, W. I. Madden, J. R. McDonald, I. Andonovic, “Vibration compensation technique for an optical current transducer,” Opt. Eng. 38, 1708–1714 (1999).
[CrossRef]

Ning, Y. N.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Palmer, A. W.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Papp, A.

Perciante, D.

Rogers, A. J.

A. J. Rogers, “Optical fiber current measurement,” in Optical Fiber Sensor Technology, K. T. V. Grattan, B. T. Megitt, eds. (Chapman & Hall, London, 1995), pp. 421–439.
[CrossRef]

Smith, A. M.

A. M. Smith, “Optical fibers for current measurement applications,” Opt. Laser Technol. 2, 25–29 (1980).
[CrossRef]

Wang, Z. P.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Wayte, A. P.

P. Akhavan Leilabady, A. P. Wayte, M. Berwick, J. D. C. Jones, D. A. Jackson, “A pseudo-reciprocal fiber-optic Faraday rotation sensor: current measurement and data communication applications,” Opt. Commun. 59, 173–176 (1986).

Webster, C. R.

C. R. Webster, R. T. Menzies, E. D. Hinkley, “Principles of harmonic detection,” in Laser Remote Chemical Analysis, R. M. Measures, ed. (Wiley, New York, 1988), pp. 207–214.

Appl. Opt.

J. Lightwave Technol.

A. D. Kersey, D. A. Jackson, “Current sensing utilizing heterodyne detection of the Faraday effect in single-mode optical fiber,” J. Lightwave Technol. 4, 640–644 (1986).
[CrossRef]

Opt. Commun.

P. Akhavan Leilabady, A. P. Wayte, M. Berwick, J. D. C. Jones, D. A. Jackson, “A pseudo-reciprocal fiber-optic Faraday rotation sensor: current measurement and data communication applications,” Opt. Commun. 59, 173–176 (1986).

Opt. Eng.

P. Niewczas, A. Cruden, W. C. Michie, W. I. Madden, J. R. McDonald, I. Andonovic, “Vibration compensation technique for an optical current transducer,” Opt. Eng. 38, 1708–1714 (1999).
[CrossRef]

H. Lin, W.-W. Lin, M.-H. Chen, S.-C. Huang, “Vibration insensitive optical fiber current sensor with a modified reflection interferometer,” Opt. Eng. 38, 1722–1729 (1999).
[CrossRef]

Opt. Laser Technol.

A. M. Smith, “Optical fibers for current measurement applications,” Opt. Laser Technol. 2, 25–29 (1980).
[CrossRef]

Opt. Lett.

Rev. Sci. Instrum.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Other

C. R. Webster, R. T. Menzies, E. D. Hinkley, “Principles of harmonic detection,” in Laser Remote Chemical Analysis, R. M. Measures, ed. (Wiley, New York, 1988), pp. 207–214.

A. J. Rogers, “Optical fiber current measurement,” in Optical Fiber Sensor Technology, K. T. V. Grattan, B. T. Megitt, eds. (Chapman & Hall, London, 1995), pp. 421–439.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Layout of a basic current sensor head; (b) polarization directions before and after the Faraday material. The arrows on the polarizers, P1,2, indicate the direction of maximum transmission, α(t) is the time-dependent Faraday polarization rotation generated in the material, FM, and θ is the angle between the polarization directions of P1 and P2.

Fig. 2
Fig. 2

Experimental results.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

αt=NVkit,
IR=Itcos2θ+αt=It21+cos2θcos2αt-sin2θsin2αt.
IRItcos2θ-N2V2k2i2tcos2θ-NVkitsin2θ.
it=i0 coswt+φ,
IRItcos2θ-N2V2k2i02 cos2wt+φcos2θ-NVki0 coswt+φsin2θItcos2θ-N2V2k2i02/2cos2θ-N2V2k2i02/2cos2wt+2φcos2θ-NVki0 coswt+φsin2θ.
Iw=|ItNVki0 sin(2θ|,
I2w=|ItN2V2k2i02/2cos2θ|,
I2wIw=NVki0/|2 tan2θ|

Metrics