Abstract

A variable duty cycle quasi-cw frequency scanning technique was applied to reduce thermal effects resulting from the high heat dissipation of type I quantum-cascade lasers. This technique was combined with a 100-m path-length multipass cell and a zero-air background-subtraction technique to enhance detection sensitivity to a parts-in-109 (ppb) concentration level for spectroscopic trace-gas detection of CH4, N2O, H2O, and C2H5OH in ambient air at 7.9 µm. A new technique for analysis of dense high-resolution absorption spectra was applied to detection of ethanol in ambient air, yielding a 125-ppb detection limit.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Capasso, C. Gmachl, D. L. Sivco, A. Y. Cho, “Quantum cascade lasers,” Phys. World 12, 27–33 (1999); F. Capasso, C. Gmachl, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, A. Y. Cho, “High performance quantum cascade lasers,” Opt. Photon. News 10(10), 32–37 (1999).
  2. A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Methane concentration and isotopic composition measurements with a mid-infrared quantum cascade laser,” Opt. Lett. 24, 1762–1764 (1999).
    [CrossRef]
  3. B. A. Paldus, T. G. Spence, R. N. Zare, J. Oomens, F. J. M. Harren, D. H. Parker, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Photoacoustic spectroscopy using quantum-cascade lasers,” Opt. Lett. 24, 178–180 (1999).
    [CrossRef]
  4. S. W. Sharpe, J. F. Kelly, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “High-resolution (Doppler-limited) spectroscopy using quantum-cascade distributed-feedback lasers,” Opt. Lett. 23, 1396–1398 (1998).
    [CrossRef]
  5. K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–221 (1997).
    [CrossRef]
  6. A. Fried, S. Sewell, B. Henry, B. P. Wert, T. Gilpin, J. R. Drummond, “Tunable diode laser absorption spectrometer for ground-based measurements of formaldehyde,” J. Geophys. Res. 102, 6253–6266 (1997).
    [CrossRef]
  7. P. Bergamaschi, M. Schupp, G. W. Harris, “High-precision direct measurements of 13CH4/12CH4 and 12CH3D/12CH4 ratios in atmospheric methane sources by means of a long-path tunable diode laser absorption spectrometer,” Appl. Opt. 33, 7704–7716 (1994).
    [CrossRef] [PubMed]
  8. P. Fritz, J. Ch. Fontes, eds., Handbook of Environmental Isotope Geochemistry (Elsevier, New York, 1980), Vol. 1, pp. 1–19.
  9. International Atomic Energy Agency and World Meteorological Organization, Global Network for Isotopes in Precipitation. The GNIP Database release 3, October1999, http://www.iaea.org/programs/ri/gnip/gnipmain.htm .
  10. A. A. Stuchebrukhov, S. I. Ionov, V. S. Letokhov, “IR spectra of highly vibrationally excited large polyatomic molecules and intramolecular relaxation,” J. Phys. Chem. 93, 5357–5365 (1989).
    [CrossRef]
  11. M. Kubista, J. Nygren, A. Elbergali, R. Sjöback, “Making reference samples redundant,” Crit. Rev. Anal. Chem. 29, 1–28 (1999).
    [CrossRef]
  12. M. J. McShane, G. L. Coté, C. H. Spiegelman, “Assessment of partial least-squares calibration and wavelength selection for complex near-infrared spectra,” Appl. Spectrosc. 52, 878–884 (1998).
    [CrossRef]

1999 (4)

F. Capasso, C. Gmachl, D. L. Sivco, A. Y. Cho, “Quantum cascade lasers,” Phys. World 12, 27–33 (1999); F. Capasso, C. Gmachl, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, A. Y. Cho, “High performance quantum cascade lasers,” Opt. Photon. News 10(10), 32–37 (1999).

A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Methane concentration and isotopic composition measurements with a mid-infrared quantum cascade laser,” Opt. Lett. 24, 1762–1764 (1999).
[CrossRef]

B. A. Paldus, T. G. Spence, R. N. Zare, J. Oomens, F. J. M. Harren, D. H. Parker, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Photoacoustic spectroscopy using quantum-cascade lasers,” Opt. Lett. 24, 178–180 (1999).
[CrossRef]

M. Kubista, J. Nygren, A. Elbergali, R. Sjöback, “Making reference samples redundant,” Crit. Rev. Anal. Chem. 29, 1–28 (1999).
[CrossRef]

1998 (2)

1997 (2)

K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–221 (1997).
[CrossRef]

A. Fried, S. Sewell, B. Henry, B. P. Wert, T. Gilpin, J. R. Drummond, “Tunable diode laser absorption spectrometer for ground-based measurements of formaldehyde,” J. Geophys. Res. 102, 6253–6266 (1997).
[CrossRef]

1994 (1)

1989 (1)

A. A. Stuchebrukhov, S. I. Ionov, V. S. Letokhov, “IR spectra of highly vibrationally excited large polyatomic molecules and intramolecular relaxation,” J. Phys. Chem. 93, 5357–5365 (1989).
[CrossRef]

Baillargeon, J. N.

Bergamaschi, P.

Cai, S.

Capasso, F.

Cho, A. Y.

Coté, G. L.

Curl, R. F.

Drummond, J. R.

A. Fried, S. Sewell, B. Henry, B. P. Wert, T. Gilpin, J. R. Drummond, “Tunable diode laser absorption spectrometer for ground-based measurements of formaldehyde,” J. Geophys. Res. 102, 6253–6266 (1997).
[CrossRef]

Elbergali, A.

M. Kubista, J. Nygren, A. Elbergali, R. Sjöback, “Making reference samples redundant,” Crit. Rev. Anal. Chem. 29, 1–28 (1999).
[CrossRef]

Faist, J.

Fried, A.

A. Fried, S. Sewell, B. Henry, B. P. Wert, T. Gilpin, J. R. Drummond, “Tunable diode laser absorption spectrometer for ground-based measurements of formaldehyde,” J. Geophys. Res. 102, 6253–6266 (1997).
[CrossRef]

Gilpin, T.

A. Fried, S. Sewell, B. Henry, B. P. Wert, T. Gilpin, J. R. Drummond, “Tunable diode laser absorption spectrometer for ground-based measurements of formaldehyde,” J. Geophys. Res. 102, 6253–6266 (1997).
[CrossRef]

Gmachl, C.

Harren, F. J. M.

Harris, G. W.

Hartman, J. S.

Henry, B.

A. Fried, S. Sewell, B. Henry, B. P. Wert, T. Gilpin, J. R. Drummond, “Tunable diode laser absorption spectrometer for ground-based measurements of formaldehyde,” J. Geophys. Res. 102, 6253–6266 (1997).
[CrossRef]

Hutchinson, A. L.

Ionov, S. I.

A. A. Stuchebrukhov, S. I. Ionov, V. S. Letokhov, “IR spectra of highly vibrationally excited large polyatomic molecules and intramolecular relaxation,” J. Phys. Chem. 93, 5357–5365 (1989).
[CrossRef]

Kelly, J. F.

Kosterev, A. A.

Kubista, M.

M. Kubista, J. Nygren, A. Elbergali, R. Sjöback, “Making reference samples redundant,” Crit. Rev. Anal. Chem. 29, 1–28 (1999).
[CrossRef]

Letokhov, V. S.

A. A. Stuchebrukhov, S. I. Ionov, V. S. Letokhov, “IR spectra of highly vibrationally excited large polyatomic molecules and intramolecular relaxation,” J. Phys. Chem. 93, 5357–5365 (1989).
[CrossRef]

McShane, M. J.

Namjou, K.

Nygren, J.

M. Kubista, J. Nygren, A. Elbergali, R. Sjöback, “Making reference samples redundant,” Crit. Rev. Anal. Chem. 29, 1–28 (1999).
[CrossRef]

Oomens, J.

Paldus, B. A.

Parker, D. H.

Schupp, M.

Sewell, S.

A. Fried, S. Sewell, B. Henry, B. P. Wert, T. Gilpin, J. R. Drummond, “Tunable diode laser absorption spectrometer for ground-based measurements of formaldehyde,” J. Geophys. Res. 102, 6253–6266 (1997).
[CrossRef]

Sharpe, S. W.

Sivco, D. L.

Sjöback, R.

M. Kubista, J. Nygren, A. Elbergali, R. Sjöback, “Making reference samples redundant,” Crit. Rev. Anal. Chem. 29, 1–28 (1999).
[CrossRef]

Spence, T. G.

Spiegelman, C. H.

Stuchebrukhov, A. A.

A. A. Stuchebrukhov, S. I. Ionov, V. S. Letokhov, “IR spectra of highly vibrationally excited large polyatomic molecules and intramolecular relaxation,” J. Phys. Chem. 93, 5357–5365 (1989).
[CrossRef]

Tittel, F. K.

Wert, B. P.

A. Fried, S. Sewell, B. Henry, B. P. Wert, T. Gilpin, J. R. Drummond, “Tunable diode laser absorption spectrometer for ground-based measurements of formaldehyde,” J. Geophys. Res. 102, 6253–6266 (1997).
[CrossRef]

Whittaker, E. A.

Zare, R. N.

Appl. Opt. (1)

Appl. Spectrosc. (1)

Crit. Rev. Anal. Chem. (1)

M. Kubista, J. Nygren, A. Elbergali, R. Sjöback, “Making reference samples redundant,” Crit. Rev. Anal. Chem. 29, 1–28 (1999).
[CrossRef]

J. Geophys. Res. (1)

A. Fried, S. Sewell, B. Henry, B. P. Wert, T. Gilpin, J. R. Drummond, “Tunable diode laser absorption spectrometer for ground-based measurements of formaldehyde,” J. Geophys. Res. 102, 6253–6266 (1997).
[CrossRef]

J. Phys. Chem. (1)

A. A. Stuchebrukhov, S. I. Ionov, V. S. Letokhov, “IR spectra of highly vibrationally excited large polyatomic molecules and intramolecular relaxation,” J. Phys. Chem. 93, 5357–5365 (1989).
[CrossRef]

Opt. Lett. (4)

Phys. World (1)

F. Capasso, C. Gmachl, D. L. Sivco, A. Y. Cho, “Quantum cascade lasers,” Phys. World 12, 27–33 (1999); F. Capasso, C. Gmachl, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, A. Y. Cho, “High performance quantum cascade lasers,” Opt. Photon. News 10(10), 32–37 (1999).

Other (2)

P. Fritz, J. Ch. Fontes, eds., Handbook of Environmental Isotope Geochemistry (Elsevier, New York, 1980), Vol. 1, pp. 1–19.

International Atomic Energy Agency and World Meteorological Organization, Global Network for Isotopes in Precipitation. The GNIP Database release 3, October1999, http://www.iaea.org/programs/ri/gnip/gnipmain.htm .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the QC DFB–based gas sensor.

Fig. 2
Fig. 2

Laser current and frequency as a function of time when a 200-µs-long pulse is applied to the external modulation input of the laser current driver. Circles indicate positions of the etalon fringes. The fitting curve is a fourth-order polynomial.

Fig. 3
Fig. 3

Example of an absorption spectrum of room air obtained with a 100-m path-length multipass cell and a zero-air background-subtraction technique. The assignment of the strong spectral lines is 1, 11, 13, H2 16O; 2, 3, 10, N2O; 6–8, 14, CH4; 9, H2 18O; 12, HDO; 4, 5, CO2 in the reference zero-air that appears as a negative absorption. An arrow marks a position of the 13CH4 absorption line shown in Fig. 4.

Fig. 4
Fig. 4

Detected 13CH4 absorption line at 1260.547 cm-1 on the shoulder of a H2O line.

Fig. 5
Fig. 5

Ethanol absorption spectra obtained in a 0.43-m-long gas cell: (a) pure ethanol vapor at 1-Torr pressure; (b) same partial pressure of ethanol with room air added to a total pressure of 36.6 Torr.

Fig. 6
Fig. 6

Value of a test sample spectrum derivative as a function of the reference spectrum derivative. The test sample of room air was taken 7 min after evaporation of a few drops of ethanol near the multipass cell. The fitting line slope yields a value of k = 9.82 × 10-2, corresponding to an ethanol concentration of 12.1 ppm.

Tables (2)

Tables Icon

Table 1 Measured Concentrations of Several Ambient Air Components

Tables Icon

Table 2 Concentration Values of Trace-Gas Species in Air Samples from Two Different Data Analysis Approachesa

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

yi=a0+k=14 akxki,

Metrics