Abstract

We propose a new device, based on an array of micromechanical cantilevers, that measures both the wavelength and the optical power of a laser source with constant efficiency over a large spectral interval from the ultraviolet to the far infrared. To measure the wavelength, the thickness of the cantilevers must vary linearly along the array. The characteristics of this device are calculated, and an example is given for the design of an array of Si cantilevers that cover the 0.33–11-µm spectral range.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv, Optical Electronics, 3rd ed., (Holt, Rinehart, and Winston, New York, 1985).
  2. D. Dragoman, M. Dragoman, Advanced Optoelectronic Devices (Springer-Verlag, Heidelberg, 1999).
    [CrossRef]
  3. D. Sengupta, V. Jandhyala, S. Kim, W. Fang, J. Malin, P. Apostolakis, K.-C. Hseih, Y.-C. Chang, S. L. Chuang, S. Bandara, S. Gunapala, M. Feng, E. Michielssen, G. Stillman, “Redshifting and broadening of quantum-well infrared photodetector’s response via impurity-free vacancy disordering,” IEEE J. Sel. Top. Quantum Electron. 4, 746–757 (1998).
    [CrossRef]
  4. D. Dragoman, M. Dragoman, “Optical actuation of micromechanical tunneling structures with applications in spectrum analyzing and optical computing,” Appl. Opt. 38, 6773–6778 (1999).
    [CrossRef]
  5. M. Born, E. Wolf, Principles of Optics, 4th ed. (Pergamon, London, 1970).
  6. S. B. Waltman, W. J. Kaiser, “An electron tunneling sensor,” Sens. Actuators 19, 201–207 (1989).
    [CrossRef]
  7. J. D. Patterson, “Micro-mechanical voltage tunable Fabry-Perot filters formed in (111) Silicon,” (NASA Langley Research Center, Hampton, Va., 1997).
  8. D. R. Koehler, “Optical actuation of micromechanical components,” J. Opt. Soc. Am. B 14, 2197–2203 (1997).
    [CrossRef]
  9. M. A. McCord, A. Dana, R. F. W. Pease, “The micromechanical tunneling transistor,” J. Micromech. Microeng. 8, 209–212 (1998).
    [CrossRef]
  10. T. Hantschel, R. Stephenson, T. Trenkler, P. de Wolf, W. Vandervorst, “Characterization of silicon cantilevers with integrated pyramidal metal tips in atomic force microscopy,” in Design, Test, and Microfabrication of MEMS and MOEMS,” B. Courtois, S. B. Crary, W. Ehrfeld, H. Fujita, J. M. Karam, K. W. Markus, eds., Proc. SPIE3680, 994–1005 (1999).
    [CrossRef]
  11. M. Hoummady, H. Fujita, “Micromachines for nanoscale science and technology,” Nanotechnology 10, 29–33 (1999).
    [CrossRef]
  12. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 µm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
    [CrossRef]
  13. D. G. Cooper, J. L. Dexter, R. D. Esman, “Widely tunable polarization-stable fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 14–21 (1995).
    [CrossRef]
  14. D. S. Funk, J. G. Eden, “Glass-fiber lasers in the ultraviolet and visible,” IEEE J. Sel. Top. Quantum Electron. 1, 784–791 (1995).
    [CrossRef]
  15. C. R. Pollock, D. B. Barber, J. L. Mass, S. Markgraf, “Cr4+ lasers: present performance and prospects for new host lattices,” IEEE J. Sel. Top. Quantum Electron. 1, 62–66 (1995).
    [CrossRef]
  16. R. C. Stoneman, L. Esterowitz, “Efficient 1.94-µm Tm:YALO laser,” IEEE J. Sel. Top. Quantum Electron. 1, 78–81 (1995).
    [CrossRef]
  17. R. C. Tobin, K. A. Peard, G. H. Bode, K. Rozsa, Z. Donko, L. Szalai, “High-gain hollow-cathode metal ion lasers for the UV and VUV,” IEEE J. Sel. Top. Quantum Electron. 1, 805–810 (1995).
    [CrossRef]
  18. H. Tischler, P. Delaporte, B. Fontaine, M. L. Sentis, “Vacuum ultraviolet emissions from the ionic excimer molecules (KrCs)+ and (HeAr)+ by low-energy electron-beam excitation,” IEEE J. Sel. Top. Quantum Electron. 1, 877–885 (1995).
    [CrossRef]
  19. D. W. Coutts, D. J. W. Brown, “Production of high average power UV by second-harmonic and sum-frequency generation from copper-vapor lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 768–778 (1995).
    [CrossRef]
  20. M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, S. Kubota, “All solid-state continuous-wave frequency-quadrupled Nd:YAG laser,” IEEE J. Sel. Top. Quantum Electron. 1, 859–866 (1995).
    [CrossRef]

1999

1998

D. Sengupta, V. Jandhyala, S. Kim, W. Fang, J. Malin, P. Apostolakis, K.-C. Hseih, Y.-C. Chang, S. L. Chuang, S. Bandara, S. Gunapala, M. Feng, E. Michielssen, G. Stillman, “Redshifting and broadening of quantum-well infrared photodetector’s response via impurity-free vacancy disordering,” IEEE J. Sel. Top. Quantum Electron. 4, 746–757 (1998).
[CrossRef]

M. A. McCord, A. Dana, R. F. W. Pease, “The micromechanical tunneling transistor,” J. Micromech. Microeng. 8, 209–212 (1998).
[CrossRef]

1997

1995

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 µm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
[CrossRef]

D. G. Cooper, J. L. Dexter, R. D. Esman, “Widely tunable polarization-stable fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 14–21 (1995).
[CrossRef]

D. S. Funk, J. G. Eden, “Glass-fiber lasers in the ultraviolet and visible,” IEEE J. Sel. Top. Quantum Electron. 1, 784–791 (1995).
[CrossRef]

C. R. Pollock, D. B. Barber, J. L. Mass, S. Markgraf, “Cr4+ lasers: present performance and prospects for new host lattices,” IEEE J. Sel. Top. Quantum Electron. 1, 62–66 (1995).
[CrossRef]

R. C. Stoneman, L. Esterowitz, “Efficient 1.94-µm Tm:YALO laser,” IEEE J. Sel. Top. Quantum Electron. 1, 78–81 (1995).
[CrossRef]

R. C. Tobin, K. A. Peard, G. H. Bode, K. Rozsa, Z. Donko, L. Szalai, “High-gain hollow-cathode metal ion lasers for the UV and VUV,” IEEE J. Sel. Top. Quantum Electron. 1, 805–810 (1995).
[CrossRef]

H. Tischler, P. Delaporte, B. Fontaine, M. L. Sentis, “Vacuum ultraviolet emissions from the ionic excimer molecules (KrCs)+ and (HeAr)+ by low-energy electron-beam excitation,” IEEE J. Sel. Top. Quantum Electron. 1, 877–885 (1995).
[CrossRef]

D. W. Coutts, D. J. W. Brown, “Production of high average power UV by second-harmonic and sum-frequency generation from copper-vapor lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 768–778 (1995).
[CrossRef]

M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, S. Kubota, “All solid-state continuous-wave frequency-quadrupled Nd:YAG laser,” IEEE J. Sel. Top. Quantum Electron. 1, 859–866 (1995).
[CrossRef]

1989

S. B. Waltman, W. J. Kaiser, “An electron tunneling sensor,” Sens. Actuators 19, 201–207 (1989).
[CrossRef]

Apostolakis, P.

D. Sengupta, V. Jandhyala, S. Kim, W. Fang, J. Malin, P. Apostolakis, K.-C. Hseih, Y.-C. Chang, S. L. Chuang, S. Bandara, S. Gunapala, M. Feng, E. Michielssen, G. Stillman, “Redshifting and broadening of quantum-well infrared photodetector’s response via impurity-free vacancy disordering,” IEEE J. Sel. Top. Quantum Electron. 4, 746–757 (1998).
[CrossRef]

Bandara, S.

D. Sengupta, V. Jandhyala, S. Kim, W. Fang, J. Malin, P. Apostolakis, K.-C. Hseih, Y.-C. Chang, S. L. Chuang, S. Bandara, S. Gunapala, M. Feng, E. Michielssen, G. Stillman, “Redshifting and broadening of quantum-well infrared photodetector’s response via impurity-free vacancy disordering,” IEEE J. Sel. Top. Quantum Electron. 4, 746–757 (1998).
[CrossRef]

Barber, D. B.

C. R. Pollock, D. B. Barber, J. L. Mass, S. Markgraf, “Cr4+ lasers: present performance and prospects for new host lattices,” IEEE J. Sel. Top. Quantum Electron. 1, 62–66 (1995).
[CrossRef]

Barber, P. R.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 µm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
[CrossRef]

Bode, G. H.

R. C. Tobin, K. A. Peard, G. H. Bode, K. Rozsa, Z. Donko, L. Szalai, “High-gain hollow-cathode metal ion lasers for the UV and VUV,” IEEE J. Sel. Top. Quantum Electron. 1, 805–810 (1995).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics, 4th ed. (Pergamon, London, 1970).

Brown, D. J. W.

D. W. Coutts, D. J. W. Brown, “Production of high average power UV by second-harmonic and sum-frequency generation from copper-vapor lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 768–778 (1995).
[CrossRef]

Carman, R. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 µm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
[CrossRef]

Chang, Y.-C.

D. Sengupta, V. Jandhyala, S. Kim, W. Fang, J. Malin, P. Apostolakis, K.-C. Hseih, Y.-C. Chang, S. L. Chuang, S. Bandara, S. Gunapala, M. Feng, E. Michielssen, G. Stillman, “Redshifting and broadening of quantum-well infrared photodetector’s response via impurity-free vacancy disordering,” IEEE J. Sel. Top. Quantum Electron. 4, 746–757 (1998).
[CrossRef]

Chuang, S. L.

D. Sengupta, V. Jandhyala, S. Kim, W. Fang, J. Malin, P. Apostolakis, K.-C. Hseih, Y.-C. Chang, S. L. Chuang, S. Bandara, S. Gunapala, M. Feng, E. Michielssen, G. Stillman, “Redshifting and broadening of quantum-well infrared photodetector’s response via impurity-free vacancy disordering,” IEEE J. Sel. Top. Quantum Electron. 4, 746–757 (1998).
[CrossRef]

Cooper, D. G.

D. G. Cooper, J. L. Dexter, R. D. Esman, “Widely tunable polarization-stable fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 14–21 (1995).
[CrossRef]

Coutts, D. W.

D. W. Coutts, D. J. W. Brown, “Production of high average power UV by second-harmonic and sum-frequency generation from copper-vapor lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 768–778 (1995).
[CrossRef]

Dana, A.

M. A. McCord, A. Dana, R. F. W. Pease, “The micromechanical tunneling transistor,” J. Micromech. Microeng. 8, 209–212 (1998).
[CrossRef]

Dawes, J. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 µm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
[CrossRef]

de Wolf, P.

T. Hantschel, R. Stephenson, T. Trenkler, P. de Wolf, W. Vandervorst, “Characterization of silicon cantilevers with integrated pyramidal metal tips in atomic force microscopy,” in Design, Test, and Microfabrication of MEMS and MOEMS,” B. Courtois, S. B. Crary, W. Ehrfeld, H. Fujita, J. M. Karam, K. W. Markus, eds., Proc. SPIE3680, 994–1005 (1999).
[CrossRef]

Delaporte, P.

H. Tischler, P. Delaporte, B. Fontaine, M. L. Sentis, “Vacuum ultraviolet emissions from the ionic excimer molecules (KrCs)+ and (HeAr)+ by low-energy electron-beam excitation,” IEEE J. Sel. Top. Quantum Electron. 1, 877–885 (1995).
[CrossRef]

Dexter, J. L.

D. G. Cooper, J. L. Dexter, R. D. Esman, “Widely tunable polarization-stable fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 14–21 (1995).
[CrossRef]

Donko, Z.

R. C. Tobin, K. A. Peard, G. H. Bode, K. Rozsa, Z. Donko, L. Szalai, “High-gain hollow-cathode metal ion lasers for the UV and VUV,” IEEE J. Sel. Top. Quantum Electron. 1, 805–810 (1995).
[CrossRef]

Dragoman, D.

Dragoman, M.

Eden, J. G.

D. S. Funk, J. G. Eden, “Glass-fiber lasers in the ultraviolet and visible,” IEEE J. Sel. Top. Quantum Electron. 1, 784–791 (1995).
[CrossRef]

Eguchi, N.

M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, S. Kubota, “All solid-state continuous-wave frequency-quadrupled Nd:YAG laser,” IEEE J. Sel. Top. Quantum Electron. 1, 859–866 (1995).
[CrossRef]

Esman, R. D.

D. G. Cooper, J. L. Dexter, R. D. Esman, “Widely tunable polarization-stable fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 14–21 (1995).
[CrossRef]

Esterowitz, L.

R. C. Stoneman, L. Esterowitz, “Efficient 1.94-µm Tm:YALO laser,” IEEE J. Sel. Top. Quantum Electron. 1, 78–81 (1995).
[CrossRef]

Fang, W.

D. Sengupta, V. Jandhyala, S. Kim, W. Fang, J. Malin, P. Apostolakis, K.-C. Hseih, Y.-C. Chang, S. L. Chuang, S. Bandara, S. Gunapala, M. Feng, E. Michielssen, G. Stillman, “Redshifting and broadening of quantum-well infrared photodetector’s response via impurity-free vacancy disordering,” IEEE J. Sel. Top. Quantum Electron. 4, 746–757 (1998).
[CrossRef]

Feng, M.

D. Sengupta, V. Jandhyala, S. Kim, W. Fang, J. Malin, P. Apostolakis, K.-C. Hseih, Y.-C. Chang, S. L. Chuang, S. Bandara, S. Gunapala, M. Feng, E. Michielssen, G. Stillman, “Redshifting and broadening of quantum-well infrared photodetector’s response via impurity-free vacancy disordering,” IEEE J. Sel. Top. Quantum Electron. 4, 746–757 (1998).
[CrossRef]

Fontaine, B.

H. Tischler, P. Delaporte, B. Fontaine, M. L. Sentis, “Vacuum ultraviolet emissions from the ionic excimer molecules (KrCs)+ and (HeAr)+ by low-energy electron-beam excitation,” IEEE J. Sel. Top. Quantum Electron. 1, 877–885 (1995).
[CrossRef]

Fujita, H.

M. Hoummady, H. Fujita, “Micromachines for nanoscale science and technology,” Nanotechnology 10, 29–33 (1999).
[CrossRef]

Funk, D. S.

D. S. Funk, J. G. Eden, “Glass-fiber lasers in the ultraviolet and visible,” IEEE J. Sel. Top. Quantum Electron. 1, 784–791 (1995).
[CrossRef]

Gunapala, S.

D. Sengupta, V. Jandhyala, S. Kim, W. Fang, J. Malin, P. Apostolakis, K.-C. Hseih, Y.-C. Chang, S. L. Chuang, S. Bandara, S. Gunapala, M. Feng, E. Michielssen, G. Stillman, “Redshifting and broadening of quantum-well infrared photodetector’s response via impurity-free vacancy disordering,” IEEE J. Sel. Top. Quantum Electron. 4, 746–757 (1998).
[CrossRef]

Hanna, D. C.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 µm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
[CrossRef]

Hantschel, T.

T. Hantschel, R. Stephenson, T. Trenkler, P. de Wolf, W. Vandervorst, “Characterization of silicon cantilevers with integrated pyramidal metal tips in atomic force microscopy,” in Design, Test, and Microfabrication of MEMS and MOEMS,” B. Courtois, S. B. Crary, W. Ehrfeld, H. Fujita, J. M. Karam, K. W. Markus, eds., Proc. SPIE3680, 994–1005 (1999).
[CrossRef]

Hoummady, M.

M. Hoummady, H. Fujita, “Micromachines for nanoscale science and technology,” Nanotechnology 10, 29–33 (1999).
[CrossRef]

Hseih, K.-C.

D. Sengupta, V. Jandhyala, S. Kim, W. Fang, J. Malin, P. Apostolakis, K.-C. Hseih, Y.-C. Chang, S. L. Chuang, S. Bandara, S. Gunapala, M. Feng, E. Michielssen, G. Stillman, “Redshifting and broadening of quantum-well infrared photodetector’s response via impurity-free vacancy disordering,” IEEE J. Sel. Top. Quantum Electron. 4, 746–757 (1998).
[CrossRef]

Jandhyala, V.

D. Sengupta, V. Jandhyala, S. Kim, W. Fang, J. Malin, P. Apostolakis, K.-C. Hseih, Y.-C. Chang, S. L. Chuang, S. Bandara, S. Gunapala, M. Feng, E. Michielssen, G. Stillman, “Redshifting and broadening of quantum-well infrared photodetector’s response via impurity-free vacancy disordering,” IEEE J. Sel. Top. Quantum Electron. 4, 746–757 (1998).
[CrossRef]

Kaiser, W. J.

S. B. Waltman, W. J. Kaiser, “An electron tunneling sensor,” Sens. Actuators 19, 201–207 (1989).
[CrossRef]

Kim, S.

D. Sengupta, V. Jandhyala, S. Kim, W. Fang, J. Malin, P. Apostolakis, K.-C. Hseih, Y.-C. Chang, S. L. Chuang, S. Bandara, S. Gunapala, M. Feng, E. Michielssen, G. Stillman, “Redshifting and broadening of quantum-well infrared photodetector’s response via impurity-free vacancy disordering,” IEEE J. Sel. Top. Quantum Electron. 4, 746–757 (1998).
[CrossRef]

Koehler, D. R.

Kubota, S.

M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, S. Kubota, “All solid-state continuous-wave frequency-quadrupled Nd:YAG laser,” IEEE J. Sel. Top. Quantum Electron. 1, 859–866 (1995).
[CrossRef]

Liu, L. Y.

M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, S. Kubota, “All solid-state continuous-wave frequency-quadrupled Nd:YAG laser,” IEEE J. Sel. Top. Quantum Electron. 1, 859–866 (1995).
[CrossRef]

Mackechnie, C. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 µm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
[CrossRef]

Malin, J.

D. Sengupta, V. Jandhyala, S. Kim, W. Fang, J. Malin, P. Apostolakis, K.-C. Hseih, Y.-C. Chang, S. L. Chuang, S. Bandara, S. Gunapala, M. Feng, E. Michielssen, G. Stillman, “Redshifting and broadening of quantum-well infrared photodetector’s response via impurity-free vacancy disordering,” IEEE J. Sel. Top. Quantum Electron. 4, 746–757 (1998).
[CrossRef]

Markgraf, S.

C. R. Pollock, D. B. Barber, J. L. Mass, S. Markgraf, “Cr4+ lasers: present performance and prospects for new host lattices,” IEEE J. Sel. Top. Quantum Electron. 1, 62–66 (1995).
[CrossRef]

Mass, J. L.

C. R. Pollock, D. B. Barber, J. L. Mass, S. Markgraf, “Cr4+ lasers: present performance and prospects for new host lattices,” IEEE J. Sel. Top. Quantum Electron. 1, 62–66 (1995).
[CrossRef]

McCord, M. A.

M. A. McCord, A. Dana, R. F. W. Pease, “The micromechanical tunneling transistor,” J. Micromech. Microeng. 8, 209–212 (1998).
[CrossRef]

Michielssen, E.

D. Sengupta, V. Jandhyala, S. Kim, W. Fang, J. Malin, P. Apostolakis, K.-C. Hseih, Y.-C. Chang, S. L. Chuang, S. Bandara, S. Gunapala, M. Feng, E. Michielssen, G. Stillman, “Redshifting and broadening of quantum-well infrared photodetector’s response via impurity-free vacancy disordering,” IEEE J. Sel. Top. Quantum Electron. 4, 746–757 (1998).
[CrossRef]

Oka, M.

M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, S. Kubota, “All solid-state continuous-wave frequency-quadrupled Nd:YAG laser,” IEEE J. Sel. Top. Quantum Electron. 1, 859–866 (1995).
[CrossRef]

Pask, H. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 µm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
[CrossRef]

Patterson, J. D.

J. D. Patterson, “Micro-mechanical voltage tunable Fabry-Perot filters formed in (111) Silicon,” (NASA Langley Research Center, Hampton, Va., 1997).

Peard, K. A.

R. C. Tobin, K. A. Peard, G. H. Bode, K. Rozsa, Z. Donko, L. Szalai, “High-gain hollow-cathode metal ion lasers for the UV and VUV,” IEEE J. Sel. Top. Quantum Electron. 1, 805–810 (1995).
[CrossRef]

Pease, R. F. W.

M. A. McCord, A. Dana, R. F. W. Pease, “The micromechanical tunneling transistor,” J. Micromech. Microeng. 8, 209–212 (1998).
[CrossRef]

Pollock, C. R.

C. R. Pollock, D. B. Barber, J. L. Mass, S. Markgraf, “Cr4+ lasers: present performance and prospects for new host lattices,” IEEE J. Sel. Top. Quantum Electron. 1, 62–66 (1995).
[CrossRef]

Rozsa, K.

R. C. Tobin, K. A. Peard, G. H. Bode, K. Rozsa, Z. Donko, L. Szalai, “High-gain hollow-cathode metal ion lasers for the UV and VUV,” IEEE J. Sel. Top. Quantum Electron. 1, 805–810 (1995).
[CrossRef]

Sengupta, D.

D. Sengupta, V. Jandhyala, S. Kim, W. Fang, J. Malin, P. Apostolakis, K.-C. Hseih, Y.-C. Chang, S. L. Chuang, S. Bandara, S. Gunapala, M. Feng, E. Michielssen, G. Stillman, “Redshifting and broadening of quantum-well infrared photodetector’s response via impurity-free vacancy disordering,” IEEE J. Sel. Top. Quantum Electron. 4, 746–757 (1998).
[CrossRef]

Sentis, M. L.

H. Tischler, P. Delaporte, B. Fontaine, M. L. Sentis, “Vacuum ultraviolet emissions from the ionic excimer molecules (KrCs)+ and (HeAr)+ by low-energy electron-beam excitation,” IEEE J. Sel. Top. Quantum Electron. 1, 877–885 (1995).
[CrossRef]

Stephenson, R.

T. Hantschel, R. Stephenson, T. Trenkler, P. de Wolf, W. Vandervorst, “Characterization of silicon cantilevers with integrated pyramidal metal tips in atomic force microscopy,” in Design, Test, and Microfabrication of MEMS and MOEMS,” B. Courtois, S. B. Crary, W. Ehrfeld, H. Fujita, J. M. Karam, K. W. Markus, eds., Proc. SPIE3680, 994–1005 (1999).
[CrossRef]

Stillman, G.

D. Sengupta, V. Jandhyala, S. Kim, W. Fang, J. Malin, P. Apostolakis, K.-C. Hseih, Y.-C. Chang, S. L. Chuang, S. Bandara, S. Gunapala, M. Feng, E. Michielssen, G. Stillman, “Redshifting and broadening of quantum-well infrared photodetector’s response via impurity-free vacancy disordering,” IEEE J. Sel. Top. Quantum Electron. 4, 746–757 (1998).
[CrossRef]

Stoneman, R. C.

R. C. Stoneman, L. Esterowitz, “Efficient 1.94-µm Tm:YALO laser,” IEEE J. Sel. Top. Quantum Electron. 1, 78–81 (1995).
[CrossRef]

Szalai, L.

R. C. Tobin, K. A. Peard, G. H. Bode, K. Rozsa, Z. Donko, L. Szalai, “High-gain hollow-cathode metal ion lasers for the UV and VUV,” IEEE J. Sel. Top. Quantum Electron. 1, 805–810 (1995).
[CrossRef]

Tischler, H.

H. Tischler, P. Delaporte, B. Fontaine, M. L. Sentis, “Vacuum ultraviolet emissions from the ionic excimer molecules (KrCs)+ and (HeAr)+ by low-energy electron-beam excitation,” IEEE J. Sel. Top. Quantum Electron. 1, 877–885 (1995).
[CrossRef]

Tobin, R. C.

R. C. Tobin, K. A. Peard, G. H. Bode, K. Rozsa, Z. Donko, L. Szalai, “High-gain hollow-cathode metal ion lasers for the UV and VUV,” IEEE J. Sel. Top. Quantum Electron. 1, 805–810 (1995).
[CrossRef]

Trenkler, T.

T. Hantschel, R. Stephenson, T. Trenkler, P. de Wolf, W. Vandervorst, “Characterization of silicon cantilevers with integrated pyramidal metal tips in atomic force microscopy,” in Design, Test, and Microfabrication of MEMS and MOEMS,” B. Courtois, S. B. Crary, W. Ehrfeld, H. Fujita, J. M. Karam, K. W. Markus, eds., Proc. SPIE3680, 994–1005 (1999).
[CrossRef]

Tropper, A. C.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 µm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
[CrossRef]

Vandervorst, W.

T. Hantschel, R. Stephenson, T. Trenkler, P. de Wolf, W. Vandervorst, “Characterization of silicon cantilevers with integrated pyramidal metal tips in atomic force microscopy,” in Design, Test, and Microfabrication of MEMS and MOEMS,” B. Courtois, S. B. Crary, W. Ehrfeld, H. Fujita, J. M. Karam, K. W. Markus, eds., Proc. SPIE3680, 994–1005 (1999).
[CrossRef]

Waltman, S. B.

S. B. Waltman, W. J. Kaiser, “An electron tunneling sensor,” Sens. Actuators 19, 201–207 (1989).
[CrossRef]

Wiechmann, W.

M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, S. Kubota, “All solid-state continuous-wave frequency-quadrupled Nd:YAG laser,” IEEE J. Sel. Top. Quantum Electron. 1, 859–866 (1995).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 4th ed. (Pergamon, London, 1970).

Yariv, A.

A. Yariv, Optical Electronics, 3rd ed., (Holt, Rinehart, and Winston, New York, 1985).

Appl. Opt.

IEEE J. Sel. Top. Quantum Electron.

D. Sengupta, V. Jandhyala, S. Kim, W. Fang, J. Malin, P. Apostolakis, K.-C. Hseih, Y.-C. Chang, S. L. Chuang, S. Bandara, S. Gunapala, M. Feng, E. Michielssen, G. Stillman, “Redshifting and broadening of quantum-well infrared photodetector’s response via impurity-free vacancy disordering,” IEEE J. Sel. Top. Quantum Electron. 4, 746–757 (1998).
[CrossRef]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 µm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
[CrossRef]

D. G. Cooper, J. L. Dexter, R. D. Esman, “Widely tunable polarization-stable fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 14–21 (1995).
[CrossRef]

D. S. Funk, J. G. Eden, “Glass-fiber lasers in the ultraviolet and visible,” IEEE J. Sel. Top. Quantum Electron. 1, 784–791 (1995).
[CrossRef]

C. R. Pollock, D. B. Barber, J. L. Mass, S. Markgraf, “Cr4+ lasers: present performance and prospects for new host lattices,” IEEE J. Sel. Top. Quantum Electron. 1, 62–66 (1995).
[CrossRef]

R. C. Stoneman, L. Esterowitz, “Efficient 1.94-µm Tm:YALO laser,” IEEE J. Sel. Top. Quantum Electron. 1, 78–81 (1995).
[CrossRef]

R. C. Tobin, K. A. Peard, G. H. Bode, K. Rozsa, Z. Donko, L. Szalai, “High-gain hollow-cathode metal ion lasers for the UV and VUV,” IEEE J. Sel. Top. Quantum Electron. 1, 805–810 (1995).
[CrossRef]

H. Tischler, P. Delaporte, B. Fontaine, M. L. Sentis, “Vacuum ultraviolet emissions from the ionic excimer molecules (KrCs)+ and (HeAr)+ by low-energy electron-beam excitation,” IEEE J. Sel. Top. Quantum Electron. 1, 877–885 (1995).
[CrossRef]

D. W. Coutts, D. J. W. Brown, “Production of high average power UV by second-harmonic and sum-frequency generation from copper-vapor lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 768–778 (1995).
[CrossRef]

M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, S. Kubota, “All solid-state continuous-wave frequency-quadrupled Nd:YAG laser,” IEEE J. Sel. Top. Quantum Electron. 1, 859–866 (1995).
[CrossRef]

J. Micromech. Microeng.

M. A. McCord, A. Dana, R. F. W. Pease, “The micromechanical tunneling transistor,” J. Micromech. Microeng. 8, 209–212 (1998).
[CrossRef]

J. Opt. Soc. Am. B

Nanotechnology

M. Hoummady, H. Fujita, “Micromachines for nanoscale science and technology,” Nanotechnology 10, 29–33 (1999).
[CrossRef]

Sens. Actuators

S. B. Waltman, W. J. Kaiser, “An electron tunneling sensor,” Sens. Actuators 19, 201–207 (1989).
[CrossRef]

Other

J. D. Patterson, “Micro-mechanical voltage tunable Fabry-Perot filters formed in (111) Silicon,” (NASA Langley Research Center, Hampton, Va., 1997).

T. Hantschel, R. Stephenson, T. Trenkler, P. de Wolf, W. Vandervorst, “Characterization of silicon cantilevers with integrated pyramidal metal tips in atomic force microscopy,” in Design, Test, and Microfabrication of MEMS and MOEMS,” B. Courtois, S. B. Crary, W. Ehrfeld, H. Fujita, J. M. Karam, K. W. Markus, eds., Proc. SPIE3680, 994–1005 (1999).
[CrossRef]

M. Born, E. Wolf, Principles of Optics, 4th ed. (Pergamon, London, 1970).

A. Yariv, Optical Electronics, 3rd ed., (Holt, Rinehart, and Winston, New York, 1985).

D. Dragoman, M. Dragoman, Advanced Optoelectronic Devices (Springer-Verlag, Heidelberg, 1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic representation of a biased and deflected cantilever.

Fig. 2
Fig. 2

Schematic representation of the variation along a one-dimensional array of the cantilever thickness.

Fig. 3
Fig. 3

Typical response of the array of cantilevers, highlighting the variation along the array of the deflection of the cantilever tip. See the text for the parameters that we used for the simulation.

Fig. 4
Fig. 4

Typical response of the array of cantilevers for the maximum (dotted curve) and minimum (solid curve) wavelengths that can be measured. The parameters used for the simulations are the same as those that were used to generate Fig. 3.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I=I0 exp-2m0ϕ yL/,
yx=h-δelx=h-6ε0Et3V2h+t/εr2L2x24-Lx36+x424,
δoptx=24RScELt3x5120-L2x312+L3x26,
Rλ, t=n2λ-12 sin22πnλt/λ4n2λ+n2λ-12 sin22πnλt/λ
tj=2m+1λ0/4nλ0,
tj=mλ0/2nλ0.
Δλλ=2Δt|tj-tk|=2 AW+d|tj-tk|.
λmin=4nAW+d,
4ntN-t1λmax2ntN-t1=2nAN-1W+d.
λmax=4ntN/2m+1 or λmax=2ntN/m.
n2λ1+10.66λ2λ2-0.32+0.003λ2λ2-1.132+1.54λ2λ2-11042.
n2λ1+0.696λ2λ2-0.0682+0.408λ2λ2-0.1162+0.897λ2λ2-9.8962,

Metrics