Abstract

We demonstrate 250 mW of single-frequency 532-nm output from a simple intracavity-doubled Nd:YVO4 laser, pumped with 1.2 W from a fiber-coupled diode laser. The laser can be frequency chirped smoothly over ∼17 GHz while maintaining a single-frequency green output of greater than 200 mW. A short Fabry–Perot cavity is used, and single-frequency operation is enforced by means of a birefringent filter that utilizes the birefringence of both the KTP doubling crystal and the Nd:YVO4 laser crystal with polarization-dependent loss from a glass Brewster plate combined with polarization-dependent gain from the laser crystal.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Baer, “Large-amplitude fluctuations due to longitudinal mode-coupling in diode-pumped intracavity-doubled Nd:YAG lasers,” J. Opt. Soc. Am. 3, 1175–1180 (1986).
    [CrossRef]
  2. D. A. Draegert, “Efficient single-longitudinal-mode Nd:YAG laser,” IEEE J. Quantum Electron. 8, 235–239 (1972).
    [CrossRef]
  3. N. Mackinnon, B. D. Sinclair, “A laser-diode array pumped, Nd-YVO4/KTP, composite-material microchip laser,” Opt. Commun. 105, 183–187 (1994).
    [CrossRef]
  4. D. G. Matthews, R. S. Conroy, B. D. Sinclair, N. Mackinnon, “Blue microchip laser fabricated from Nd:YAG and KNbO3,” Opt. Lett. 21, 198–200 (1996).
    [CrossRef] [PubMed]
  5. Y. F. Chen, T. M. Huang, C. L. Wang, L. J. Lee, S. C. Wang, “Theoretical and experimental studies of single-mode operation in a diode pumped Nd:YVO4/KTP green laser: influence of KTP length,” Opt. Commun. 152, 319–323 (1998).
    [CrossRef]
  6. D. Shen, A. Liu, J. Song, K. Ueda, “Efficient operation of an intracavity-doubled Nd:YVO4/KTP laser end pumped by a high-brightness laser,” Appl. Opt. 37, 7785–7788 (1998).
    [CrossRef]
  7. Y. F. Chen, T. M. Huang, C. L. Wang, L. J. Lee, “Compact and efficient 3.2-W diode-pumped Nd:YVO4/KTP green laser,” Appl. Opt. 37, 5727–5730 (1998).
    [CrossRef]
  8. T. Y. Fan, “Single-axial mode, intracavity doubled Nd:YAG laser,” IEEE J. Quantum Electron. 27, 2091–2093 (1991).
    [CrossRef]
  9. H. Nagai, M. Kume, I. Ohta, H. Shimizu, M. Kazumura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1168 (1992).
    [CrossRef]
  10. K. Suzuki, K. Shimomura, A. Eda, K. Muro, “Low-noise diode-pumped intracavity-doubled laser with off-axially cut Nd:YVO4,” Opt. Lett. 19, 1624–1626 (1994).
    [CrossRef] [PubMed]
  11. A. J. Kemp, G. J. Friel, R. S. Conroy, T. K. Lake, B. D. Sinclair, “Polarisation effects, birefringent filtering, and single-frequency operation in lasers containing a birefringent gain crystal,” IEEE J. Quantum Electron. 36, 228–235 (2000).
    [CrossRef]
  12. J. J. Zayhowski, “The effects of spatial hole burning and energy diffusion on the single-mode operation of standing-wave lasers,” IEEE J. Quantum Electron. 26, 2052–2057 (1990).
    [CrossRef]

2000

A. J. Kemp, G. J. Friel, R. S. Conroy, T. K. Lake, B. D. Sinclair, “Polarisation effects, birefringent filtering, and single-frequency operation in lasers containing a birefringent gain crystal,” IEEE J. Quantum Electron. 36, 228–235 (2000).
[CrossRef]

1998

1996

1994

K. Suzuki, K. Shimomura, A. Eda, K. Muro, “Low-noise diode-pumped intracavity-doubled laser with off-axially cut Nd:YVO4,” Opt. Lett. 19, 1624–1626 (1994).
[CrossRef] [PubMed]

N. Mackinnon, B. D. Sinclair, “A laser-diode array pumped, Nd-YVO4/KTP, composite-material microchip laser,” Opt. Commun. 105, 183–187 (1994).
[CrossRef]

1992

H. Nagai, M. Kume, I. Ohta, H. Shimizu, M. Kazumura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1168 (1992).
[CrossRef]

1991

T. Y. Fan, “Single-axial mode, intracavity doubled Nd:YAG laser,” IEEE J. Quantum Electron. 27, 2091–2093 (1991).
[CrossRef]

1990

J. J. Zayhowski, “The effects of spatial hole burning and energy diffusion on the single-mode operation of standing-wave lasers,” IEEE J. Quantum Electron. 26, 2052–2057 (1990).
[CrossRef]

1986

T. Baer, “Large-amplitude fluctuations due to longitudinal mode-coupling in diode-pumped intracavity-doubled Nd:YAG lasers,” J. Opt. Soc. Am. 3, 1175–1180 (1986).
[CrossRef]

1972

D. A. Draegert, “Efficient single-longitudinal-mode Nd:YAG laser,” IEEE J. Quantum Electron. 8, 235–239 (1972).
[CrossRef]

Baer, T.

T. Baer, “Large-amplitude fluctuations due to longitudinal mode-coupling in diode-pumped intracavity-doubled Nd:YAG lasers,” J. Opt. Soc. Am. 3, 1175–1180 (1986).
[CrossRef]

Chen, Y. F.

Y. F. Chen, T. M. Huang, C. L. Wang, L. J. Lee, S. C. Wang, “Theoretical and experimental studies of single-mode operation in a diode pumped Nd:YVO4/KTP green laser: influence of KTP length,” Opt. Commun. 152, 319–323 (1998).
[CrossRef]

Y. F. Chen, T. M. Huang, C. L. Wang, L. J. Lee, “Compact and efficient 3.2-W diode-pumped Nd:YVO4/KTP green laser,” Appl. Opt. 37, 5727–5730 (1998).
[CrossRef]

Conroy, R. S.

A. J. Kemp, G. J. Friel, R. S. Conroy, T. K. Lake, B. D. Sinclair, “Polarisation effects, birefringent filtering, and single-frequency operation in lasers containing a birefringent gain crystal,” IEEE J. Quantum Electron. 36, 228–235 (2000).
[CrossRef]

D. G. Matthews, R. S. Conroy, B. D. Sinclair, N. Mackinnon, “Blue microchip laser fabricated from Nd:YAG and KNbO3,” Opt. Lett. 21, 198–200 (1996).
[CrossRef] [PubMed]

Draegert, D. A.

D. A. Draegert, “Efficient single-longitudinal-mode Nd:YAG laser,” IEEE J. Quantum Electron. 8, 235–239 (1972).
[CrossRef]

Eda, A.

Fan, T. Y.

T. Y. Fan, “Single-axial mode, intracavity doubled Nd:YAG laser,” IEEE J. Quantum Electron. 27, 2091–2093 (1991).
[CrossRef]

Friel, G. J.

A. J. Kemp, G. J. Friel, R. S. Conroy, T. K. Lake, B. D. Sinclair, “Polarisation effects, birefringent filtering, and single-frequency operation in lasers containing a birefringent gain crystal,” IEEE J. Quantum Electron. 36, 228–235 (2000).
[CrossRef]

Huang, T. M.

Y. F. Chen, T. M. Huang, C. L. Wang, L. J. Lee, “Compact and efficient 3.2-W diode-pumped Nd:YVO4/KTP green laser,” Appl. Opt. 37, 5727–5730 (1998).
[CrossRef]

Y. F. Chen, T. M. Huang, C. L. Wang, L. J. Lee, S. C. Wang, “Theoretical and experimental studies of single-mode operation in a diode pumped Nd:YVO4/KTP green laser: influence of KTP length,” Opt. Commun. 152, 319–323 (1998).
[CrossRef]

Kazumura, M.

H. Nagai, M. Kume, I. Ohta, H. Shimizu, M. Kazumura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1168 (1992).
[CrossRef]

Kemp, A. J.

A. J. Kemp, G. J. Friel, R. S. Conroy, T. K. Lake, B. D. Sinclair, “Polarisation effects, birefringent filtering, and single-frequency operation in lasers containing a birefringent gain crystal,” IEEE J. Quantum Electron. 36, 228–235 (2000).
[CrossRef]

Kume, M.

H. Nagai, M. Kume, I. Ohta, H. Shimizu, M. Kazumura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1168 (1992).
[CrossRef]

Lake, T. K.

A. J. Kemp, G. J. Friel, R. S. Conroy, T. K. Lake, B. D. Sinclair, “Polarisation effects, birefringent filtering, and single-frequency operation in lasers containing a birefringent gain crystal,” IEEE J. Quantum Electron. 36, 228–235 (2000).
[CrossRef]

Lee, L. J.

Y. F. Chen, T. M. Huang, C. L. Wang, L. J. Lee, S. C. Wang, “Theoretical and experimental studies of single-mode operation in a diode pumped Nd:YVO4/KTP green laser: influence of KTP length,” Opt. Commun. 152, 319–323 (1998).
[CrossRef]

Y. F. Chen, T. M. Huang, C. L. Wang, L. J. Lee, “Compact and efficient 3.2-W diode-pumped Nd:YVO4/KTP green laser,” Appl. Opt. 37, 5727–5730 (1998).
[CrossRef]

Liu, A.

Mackinnon, N.

D. G. Matthews, R. S. Conroy, B. D. Sinclair, N. Mackinnon, “Blue microchip laser fabricated from Nd:YAG and KNbO3,” Opt. Lett. 21, 198–200 (1996).
[CrossRef] [PubMed]

N. Mackinnon, B. D. Sinclair, “A laser-diode array pumped, Nd-YVO4/KTP, composite-material microchip laser,” Opt. Commun. 105, 183–187 (1994).
[CrossRef]

Matthews, D. G.

Muro, K.

Nagai, H.

H. Nagai, M. Kume, I. Ohta, H. Shimizu, M. Kazumura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1168 (1992).
[CrossRef]

Ohta, I.

H. Nagai, M. Kume, I. Ohta, H. Shimizu, M. Kazumura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1168 (1992).
[CrossRef]

Shen, D.

Shimizu, H.

H. Nagai, M. Kume, I. Ohta, H. Shimizu, M. Kazumura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1168 (1992).
[CrossRef]

Shimomura, K.

Sinclair, B. D.

A. J. Kemp, G. J. Friel, R. S. Conroy, T. K. Lake, B. D. Sinclair, “Polarisation effects, birefringent filtering, and single-frequency operation in lasers containing a birefringent gain crystal,” IEEE J. Quantum Electron. 36, 228–235 (2000).
[CrossRef]

D. G. Matthews, R. S. Conroy, B. D. Sinclair, N. Mackinnon, “Blue microchip laser fabricated from Nd:YAG and KNbO3,” Opt. Lett. 21, 198–200 (1996).
[CrossRef] [PubMed]

N. Mackinnon, B. D. Sinclair, “A laser-diode array pumped, Nd-YVO4/KTP, composite-material microchip laser,” Opt. Commun. 105, 183–187 (1994).
[CrossRef]

Song, J.

Suzuki, K.

Ueda, K.

Wang, C. L.

Y. F. Chen, T. M. Huang, C. L. Wang, L. J. Lee, S. C. Wang, “Theoretical and experimental studies of single-mode operation in a diode pumped Nd:YVO4/KTP green laser: influence of KTP length,” Opt. Commun. 152, 319–323 (1998).
[CrossRef]

Y. F. Chen, T. M. Huang, C. L. Wang, L. J. Lee, “Compact and efficient 3.2-W diode-pumped Nd:YVO4/KTP green laser,” Appl. Opt. 37, 5727–5730 (1998).
[CrossRef]

Wang, S. C.

Y. F. Chen, T. M. Huang, C. L. Wang, L. J. Lee, S. C. Wang, “Theoretical and experimental studies of single-mode operation in a diode pumped Nd:YVO4/KTP green laser: influence of KTP length,” Opt. Commun. 152, 319–323 (1998).
[CrossRef]

Zayhowski, J. J.

J. J. Zayhowski, “The effects of spatial hole burning and energy diffusion on the single-mode operation of standing-wave lasers,” IEEE J. Quantum Electron. 26, 2052–2057 (1990).
[CrossRef]

Appl. Opt.

IEEE J. Quantum Electron.

D. A. Draegert, “Efficient single-longitudinal-mode Nd:YAG laser,” IEEE J. Quantum Electron. 8, 235–239 (1972).
[CrossRef]

T. Y. Fan, “Single-axial mode, intracavity doubled Nd:YAG laser,” IEEE J. Quantum Electron. 27, 2091–2093 (1991).
[CrossRef]

H. Nagai, M. Kume, I. Ohta, H. Shimizu, M. Kazumura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1168 (1992).
[CrossRef]

A. J. Kemp, G. J. Friel, R. S. Conroy, T. K. Lake, B. D. Sinclair, “Polarisation effects, birefringent filtering, and single-frequency operation in lasers containing a birefringent gain crystal,” IEEE J. Quantum Electron. 36, 228–235 (2000).
[CrossRef]

J. J. Zayhowski, “The effects of spatial hole burning and energy diffusion on the single-mode operation of standing-wave lasers,” IEEE J. Quantum Electron. 26, 2052–2057 (1990).
[CrossRef]

J. Opt. Soc. Am.

T. Baer, “Large-amplitude fluctuations due to longitudinal mode-coupling in diode-pumped intracavity-doubled Nd:YAG lasers,” J. Opt. Soc. Am. 3, 1175–1180 (1986).
[CrossRef]

Opt. Commun.

N. Mackinnon, B. D. Sinclair, “A laser-diode array pumped, Nd-YVO4/KTP, composite-material microchip laser,” Opt. Commun. 105, 183–187 (1994).
[CrossRef]

Y. F. Chen, T. M. Huang, C. L. Wang, L. J. Lee, S. C. Wang, “Theoretical and experimental studies of single-mode operation in a diode pumped Nd:YVO4/KTP green laser: influence of KTP length,” Opt. Commun. 152, 319–323 (1998).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the single-frequency green laser. TEC, thermoelectric cooler; PZT, piezoelectric transducer; AR, antireflection; HR, high reflection.

Fig. 2
Fig. 2

Variation of the birefringent loss per round trip with temperature of the Nd:YVO4 laser crystal. λ0 is the wavelength of a longitudinal mode that corresponds to a peak transmission (zero loss per round trip) of the birefringent filter. The plots are labeled λ m for potential laser modes of wavelength λ0 - mΔλ, where Δλ is the longitudinal-mode spacing. The figure shows plots for the eigenmode with the lower loss only. The temperature difference was set relative to the temperature of the laser crystal that gives the full wave phase retardation in a double pass for the longitudinal mode at λ0.

Fig. 3
Fig. 3

Variation in the green and infrared output power against the incident pump power. The laser was optimized to give the highest single-frequency green power at every pump power.

Fig. 4
Fig. 4

Typical intensity noise spectrum of the green output. The vertical scale is 10 dB/div and the frequency span is 0–1 MHz. The inset shows a typical scanning Fabry–Perot trace for the 1064-nm leakage while 250 mW of power is generated at 532 nm. This trace confirms single-frequency operation. FSR, free spectral range of the scanning Fabry–Perot.

Fig. 5
Fig. 5

Variation in green output power as the cavity length was scanned linearly in time. The two spikes were caused by mode hoping between adjacent longitudinal modes. The smooth tuning range, with single-frequency output, was ∼17 GHz at 532 nm and corresponded to the free spectral range of the laser.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ϕ=4πΔnlcλ,
Δλf=λ22Δnlc.
Δϕ1=4πΔnlcλ2 Δλ1.
ΔϕΔT=4πlcλdnedT-dnodT+ΔnαϕΔT,
ΔT1=Δndnedt-dnodt+ΔnαϕΔλ1λ.

Metrics