Abstract

Optical disk readout signals with a solid immersion lens (SIL) and the land–groove recording technique are calculated by use of a simplified vector-diffraction theory. In this method the full vector-diffraction theory is applied to calculate the diffracted light from the initial state of the disk, and the light scattered from the recorded marks is regarded as a perturbation. Using this method, we confirmed that the land–groove recording technique is effective as a means of cross-talk reduction even when the numerical aperture is more than 1. However, the top surface of the disk under the SIL must be flat, or the readout signal from marks recorded on a groove decays when the optical depth of the groove is greater than λ/8.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Mansfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
    [CrossRef]
  2. S. M. Mansfield, W. R. Studenmund, G. S. Kino, K. Osato, “High-numerical-aperture lens system for optical storage,” Opt. Lett. 18, 305–307 (1993).
    [CrossRef]
  3. I. Ichimura, S. Hayashi, G. S. Kino, “High-density optical recording using a solid immersion lens,” Appl. Opt. 36, 4339–4348 (1997).
    [CrossRef] [PubMed]
  4. I. Ichimura, K. Kishima, K. Osato, K. Yamamoto, K. Saito, “Near-field phase-change optical recording of 1.36 numerical aperture,” Jpn. J. Appl. Phys. 39, 962–967 (2000).
    [CrossRef]
  5. K. Otaki, T. Irita, Y. Tokoyoda, H. Ooki, J. Saito, “Simulation of readout signals with near field SIL,” in Optical Data Storage ’98, S. Kubota, T. D. Milster, P. J. Wehrenberg, eds., Proc. SPIE3401, 87–94 (1998).
    [CrossRef]
  6. K. Saito, A. Nakaoki, M. Kaneko, “A simulation of magneto-optical signals in near-field recording,” Jpn. J. Appl. Phys. 38, 6743–6749 (1999).
    [CrossRef]
  7. N. Miyagawa, Y. Gotoh, E. Ohno, K. Nishiuchi, N. Akahira, “Land and groove recording for high track density on phase-change optical disks,” Jpn. J. Appl. Phys. 32, 5324–5328 (1993).
    [CrossRef]
  8. M. Mansuripur, “Distribution of light at and near the focus of high-numerical-aperture objectives,” J. Opt. Soc. Am. A 3, 2086–2093 (1986).
    [CrossRef]
  9. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).
    [CrossRef]
  10. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996).
    [CrossRef]
  11. H. H. Hopkins, “Diffraction theory of laser read-out systems for optical video discs,” J. Opt. Soc. Am. 69, 4–23 (1979).
    [CrossRef]
  12. A. B. Marchant, “Optical disk readout: a model for coherent scanning,” Appl. Opt. 21, 2085–2088 (1982).
    [CrossRef] [PubMed]
  13. K. Saito, K. Uemura, Y. Kato, S. Hineno, Y. Matsumoto, N. Nishi, K. Toyota, “Optical disk readout analysis using an extended point spread function,” Jpn. J. Appl. Phys. 39, 693–697 (2000).
    [CrossRef]
  14. C. H. F. Velzel, “Laser beam reading of video records,” Appl. Opt. 17, 2029–2036 (1978).
    [CrossRef] [PubMed]

2000 (2)

I. Ichimura, K. Kishima, K. Osato, K. Yamamoto, K. Saito, “Near-field phase-change optical recording of 1.36 numerical aperture,” Jpn. J. Appl. Phys. 39, 962–967 (2000).
[CrossRef]

K. Saito, K. Uemura, Y. Kato, S. Hineno, Y. Matsumoto, N. Nishi, K. Toyota, “Optical disk readout analysis using an extended point spread function,” Jpn. J. Appl. Phys. 39, 693–697 (2000).
[CrossRef]

1999 (1)

K. Saito, A. Nakaoki, M. Kaneko, “A simulation of magneto-optical signals in near-field recording,” Jpn. J. Appl. Phys. 38, 6743–6749 (1999).
[CrossRef]

1997 (2)

1996 (1)

1993 (2)

N. Miyagawa, Y. Gotoh, E. Ohno, K. Nishiuchi, N. Akahira, “Land and groove recording for high track density on phase-change optical disks,” Jpn. J. Appl. Phys. 32, 5324–5328 (1993).
[CrossRef]

S. M. Mansfield, W. R. Studenmund, G. S. Kino, K. Osato, “High-numerical-aperture lens system for optical storage,” Opt. Lett. 18, 305–307 (1993).
[CrossRef]

1990 (1)

S. M. Mansfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[CrossRef]

1986 (1)

1982 (1)

1979 (1)

1978 (1)

Akahira, N.

N. Miyagawa, Y. Gotoh, E. Ohno, K. Nishiuchi, N. Akahira, “Land and groove recording for high track density on phase-change optical disks,” Jpn. J. Appl. Phys. 32, 5324–5328 (1993).
[CrossRef]

Gotoh, Y.

N. Miyagawa, Y. Gotoh, E. Ohno, K. Nishiuchi, N. Akahira, “Land and groove recording for high track density on phase-change optical disks,” Jpn. J. Appl. Phys. 32, 5324–5328 (1993).
[CrossRef]

Hayashi, S.

Hineno, S.

K. Saito, K. Uemura, Y. Kato, S. Hineno, Y. Matsumoto, N. Nishi, K. Toyota, “Optical disk readout analysis using an extended point spread function,” Jpn. J. Appl. Phys. 39, 693–697 (2000).
[CrossRef]

Hopkins, H. H.

Ichimura, I.

I. Ichimura, K. Kishima, K. Osato, K. Yamamoto, K. Saito, “Near-field phase-change optical recording of 1.36 numerical aperture,” Jpn. J. Appl. Phys. 39, 962–967 (2000).
[CrossRef]

I. Ichimura, S. Hayashi, G. S. Kino, “High-density optical recording using a solid immersion lens,” Appl. Opt. 36, 4339–4348 (1997).
[CrossRef] [PubMed]

Irita, T.

K. Otaki, T. Irita, Y. Tokoyoda, H. Ooki, J. Saito, “Simulation of readout signals with near field SIL,” in Optical Data Storage ’98, S. Kubota, T. D. Milster, P. J. Wehrenberg, eds., Proc. SPIE3401, 87–94 (1998).
[CrossRef]

Kaneko, M.

K. Saito, A. Nakaoki, M. Kaneko, “A simulation of magneto-optical signals in near-field recording,” Jpn. J. Appl. Phys. 38, 6743–6749 (1999).
[CrossRef]

Kato, Y.

K. Saito, K. Uemura, Y. Kato, S. Hineno, Y. Matsumoto, N. Nishi, K. Toyota, “Optical disk readout analysis using an extended point spread function,” Jpn. J. Appl. Phys. 39, 693–697 (2000).
[CrossRef]

Kino, G. S.

Kishima, K.

I. Ichimura, K. Kishima, K. Osato, K. Yamamoto, K. Saito, “Near-field phase-change optical recording of 1.36 numerical aperture,” Jpn. J. Appl. Phys. 39, 962–967 (2000).
[CrossRef]

Li, L.

Mansfield, S. M.

Mansuripur, M.

Marchant, A. B.

Matsumoto, Y.

K. Saito, K. Uemura, Y. Kato, S. Hineno, Y. Matsumoto, N. Nishi, K. Toyota, “Optical disk readout analysis using an extended point spread function,” Jpn. J. Appl. Phys. 39, 693–697 (2000).
[CrossRef]

Miyagawa, N.

N. Miyagawa, Y. Gotoh, E. Ohno, K. Nishiuchi, N. Akahira, “Land and groove recording for high track density on phase-change optical disks,” Jpn. J. Appl. Phys. 32, 5324–5328 (1993).
[CrossRef]

Nakaoki, A.

K. Saito, A. Nakaoki, M. Kaneko, “A simulation of magneto-optical signals in near-field recording,” Jpn. J. Appl. Phys. 38, 6743–6749 (1999).
[CrossRef]

Nishi, N.

K. Saito, K. Uemura, Y. Kato, S. Hineno, Y. Matsumoto, N. Nishi, K. Toyota, “Optical disk readout analysis using an extended point spread function,” Jpn. J. Appl. Phys. 39, 693–697 (2000).
[CrossRef]

Nishiuchi, K.

N. Miyagawa, Y. Gotoh, E. Ohno, K. Nishiuchi, N. Akahira, “Land and groove recording for high track density on phase-change optical disks,” Jpn. J. Appl. Phys. 32, 5324–5328 (1993).
[CrossRef]

Ohno, E.

N. Miyagawa, Y. Gotoh, E. Ohno, K. Nishiuchi, N. Akahira, “Land and groove recording for high track density on phase-change optical disks,” Jpn. J. Appl. Phys. 32, 5324–5328 (1993).
[CrossRef]

Ooki, H.

K. Otaki, T. Irita, Y. Tokoyoda, H. Ooki, J. Saito, “Simulation of readout signals with near field SIL,” in Optical Data Storage ’98, S. Kubota, T. D. Milster, P. J. Wehrenberg, eds., Proc. SPIE3401, 87–94 (1998).
[CrossRef]

Osato, K.

I. Ichimura, K. Kishima, K. Osato, K. Yamamoto, K. Saito, “Near-field phase-change optical recording of 1.36 numerical aperture,” Jpn. J. Appl. Phys. 39, 962–967 (2000).
[CrossRef]

S. M. Mansfield, W. R. Studenmund, G. S. Kino, K. Osato, “High-numerical-aperture lens system for optical storage,” Opt. Lett. 18, 305–307 (1993).
[CrossRef]

Otaki, K.

K. Otaki, T. Irita, Y. Tokoyoda, H. Ooki, J. Saito, “Simulation of readout signals with near field SIL,” in Optical Data Storage ’98, S. Kubota, T. D. Milster, P. J. Wehrenberg, eds., Proc. SPIE3401, 87–94 (1998).
[CrossRef]

Saito, J.

K. Otaki, T. Irita, Y. Tokoyoda, H. Ooki, J. Saito, “Simulation of readout signals with near field SIL,” in Optical Data Storage ’98, S. Kubota, T. D. Milster, P. J. Wehrenberg, eds., Proc. SPIE3401, 87–94 (1998).
[CrossRef]

Saito, K.

K. Saito, K. Uemura, Y. Kato, S. Hineno, Y. Matsumoto, N. Nishi, K. Toyota, “Optical disk readout analysis using an extended point spread function,” Jpn. J. Appl. Phys. 39, 693–697 (2000).
[CrossRef]

I. Ichimura, K. Kishima, K. Osato, K. Yamamoto, K. Saito, “Near-field phase-change optical recording of 1.36 numerical aperture,” Jpn. J. Appl. Phys. 39, 962–967 (2000).
[CrossRef]

K. Saito, A. Nakaoki, M. Kaneko, “A simulation of magneto-optical signals in near-field recording,” Jpn. J. Appl. Phys. 38, 6743–6749 (1999).
[CrossRef]

Studenmund, W. R.

Tokoyoda, Y.

K. Otaki, T. Irita, Y. Tokoyoda, H. Ooki, J. Saito, “Simulation of readout signals with near field SIL,” in Optical Data Storage ’98, S. Kubota, T. D. Milster, P. J. Wehrenberg, eds., Proc. SPIE3401, 87–94 (1998).
[CrossRef]

Toyota, K.

K. Saito, K. Uemura, Y. Kato, S. Hineno, Y. Matsumoto, N. Nishi, K. Toyota, “Optical disk readout analysis using an extended point spread function,” Jpn. J. Appl. Phys. 39, 693–697 (2000).
[CrossRef]

Uemura, K.

K. Saito, K. Uemura, Y. Kato, S. Hineno, Y. Matsumoto, N. Nishi, K. Toyota, “Optical disk readout analysis using an extended point spread function,” Jpn. J. Appl. Phys. 39, 693–697 (2000).
[CrossRef]

Velzel, C. H. F.

Yamamoto, K.

I. Ichimura, K. Kishima, K. Osato, K. Yamamoto, K. Saito, “Near-field phase-change optical recording of 1.36 numerical aperture,” Jpn. J. Appl. Phys. 39, 962–967 (2000).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

S. M. Mansfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

Jpn. J. Appl. Phys. (4)

K. Saito, K. Uemura, Y. Kato, S. Hineno, Y. Matsumoto, N. Nishi, K. Toyota, “Optical disk readout analysis using an extended point spread function,” Jpn. J. Appl. Phys. 39, 693–697 (2000).
[CrossRef]

I. Ichimura, K. Kishima, K. Osato, K. Yamamoto, K. Saito, “Near-field phase-change optical recording of 1.36 numerical aperture,” Jpn. J. Appl. Phys. 39, 962–967 (2000).
[CrossRef]

K. Saito, A. Nakaoki, M. Kaneko, “A simulation of magneto-optical signals in near-field recording,” Jpn. J. Appl. Phys. 38, 6743–6749 (1999).
[CrossRef]

N. Miyagawa, Y. Gotoh, E. Ohno, K. Nishiuchi, N. Akahira, “Land and groove recording for high track density on phase-change optical disks,” Jpn. J. Appl. Phys. 32, 5324–5328 (1993).
[CrossRef]

Opt. Lett. (1)

Other (1)

K. Otaki, T. Irita, Y. Tokoyoda, H. Ooki, J. Saito, “Simulation of readout signals with near field SIL,” in Optical Data Storage ’98, S. Kubota, T. D. Milster, P. J. Wehrenberg, eds., Proc. SPIE3401, 87–94 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the optics, coordinate system, and representations of electric fields and optical components used for calculation.

Fig. 2
Fig. 2

Schematic of a groove structure. Plane Ω splits the reflection coefficient matrix R 0 into R 1 and R 2.

Fig. 3
Fig. 3

Two-dimensional function that designates the pattern of recorded marks projected onto the xy plane. Function S gives 1 where a mark is recorded; elsewhere it gives 0.

Fig. 4
Fig. 4

Examples of two kinds of disk structure used for calculation. (a) Type I structure, surface of the disk follows the groove shape on the substructure; (b) type II structure, surface of the disk is flat.

Fig. 5
Fig. 5

Air-gap dependencies of MTF and frequency response of cross talk.

Fig. 6
Fig. 6

Groove-depth dependencies of MTF in type I structure. (a) Signals from land. (b) Signals from groove.

Fig. 7
Fig. 7

Groove-depth dependencies of MTF in type II structure. (a) Signals from land. (b) Signals from groove.

Fig. 8
Fig. 8

Groove-depth dependencies of carrier and cross-talk signals in type I structure. (a) Carrier signals from lands and cross talk from grooves. (b) Carriers from grooves and cross talk from lands.

Fig. 9
Fig. 9

Groove-depth dependencies of carrier and cross-talk signals in type II structure. (a) Carrier signals from lands and cross talk from grooves. (b) Carriers from grooves and cross-talk from lands.

Tables (1)

Tables Icon

Table 1 Media Constants Used for Calculation

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ĒTIp=T23pETinp,  EToutp=T32pĒTOp,T23p=1px2+py2k0NSILpz-pyk0NSIL-pxpzpxk0NSIL-pypz×-pypx-px-py,T32p=1px2+py2pz-pypxpxpy×-pypzpxpzpxk0NSILpyk0NSIL.
ETOr, z=-+-+n=-MxMxm=-MyMy Rn,m0pĒTIp×expik0p+qn,m·r-γn,mzdp,r=x, y,  γn,m=NSIL2-|p+qn,m|21/2,qn,m=λnPx, mPy.
I=-+-+BpT32pĒTOp2dp,ĒTOp=n=-MxMxm=-MyMy Rn,m0p-qn,mĒTIp-qn,m.
ETOr, z=-+-+ĒTOpexpik0p·r-pzzdp.
ĒT1p=n=-MxMx Rn1,inip-qnĒTIp-qn,
ET1r=-+-+ĒT1pexpik0p·rdp.
ΔET1r=ET1,recr-ET1,inir,ET1,recr=-+-+n=-MxMx Rn1,recp-qn×ĒTIp-qnexpik0p·rdp.
ΔET2r; Δr=ΔET1rSr-Δr.
ΔE¯T3p; Δr=n=-MxMx Rn2p-qnk02π2++++×ΔET2r; Δrexp-ik0p-qn·rdr.
IΔr=-+-+ĒTDp; Δr2dp,ĒTDp; Δr=BpT32pĒT0p+ΔE¯T3p; Δr.
I˜Δr=2 Re-+-+T32*pB*pBpT32p×ĒT0p*·ΔE¯T3p; Δrdp,
I˜Δr=2 Re-+-+Ev*r·EurSr-Δrdr,Eur=-+-+Ēupexpik0p·rdp,Evr=-+-+Ēvpexpik0p·rdp,Ēup=n=-MxMx ΔRn1p-qnĒIp-qn,Ēvp=n=-MxMx Rn2*p-qnT32*p×B*pBpT32pĒ0p.
I˜1Δy=-+MTFfS˜fexp2πifΔydf,S˜f=-+ Sx0, yexp-2πifydy,MTFf=-+x0-w/2x0+w/2 2 ReEv*x, y·Eux, y×exp-2πifydxdy.

Metrics