Abstract

The nonlinearity of phase-conjugate beam reflection with four-wave mixing in bismuth silicon oxide crystal by use of moving gratings at large fringe modulation formed by the incident-beam ratio is investigated. On the basis of this investigation, the edge enhancement of an object and the edge-enhanced optical correlation with improved discrimination capability are achieved by use of moving gratings at an appropriate fringe velocity. Experimental results are presented.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Pichon, J. P. Huignard, “Dynamic joint Fourier transfer correlator by Bragg diffraction in photorefractive BSO crystals,” Opt. Commun. 36, 277–280 (1981).
    [CrossRef]
  2. L. Connors, P. Foote, T. J. Hall, R. Jaura, L. C. Laycock, M. W. McCall, C. R. Petts, “Fidelity of real-time correlation by four-wave mixing,” in 1984 European Conference on Optics, Optical Systems, and Applications, B. Bolger, H. A. Ferwerda, eds., Proc. SPIE492, 361–369 (1984).
    [CrossRef]
  3. J. A. Khoury, G. Hussain, R. W. Eason, “Optical tracking and motion detection using photorefractive Bi12SiO20,” Opt. Commun. 71, 138–144 (1989).
    [CrossRef]
  4. C. Soutar, Z. Q. Wang, C. M. Cartwright, W. A. Gillespie, “Real-time optical intensity correlator using photorefractive BSO and a liquid crystal television,” J. Mod. Opt. 39, 761–769 (1992).
    [CrossRef]
  5. Ph. Réfrégier, L. Solymar, H. Rajbenbach, J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
    [CrossRef]
  6. J. P. Huignard, A. Marrakchi, “Coherent signal beam amplification in two-wave mixing experiments with photorefractive Bi12SiO20 crystals,” Opt. Commun. 38, 249–254 (1981).
    [CrossRef]
  7. G. Hamel de Monchenault, J. P. Huignard, “Two-wave mixing with time modulated signal in Bi12SiO20 theory and application to homodyne wave front detection,” J. Appl. Phys. 63, 624–627 (1988).
    [CrossRef]
  8. H. Rajbenbach, J. P. Huignard, Ph. Réfrégier, “Amplified phase-conjugate beam reflection by four-wave mixing with photorefractive Bi12SiO20 crystals,” Opt. Lett. 9, 558–560 (1984).
    [CrossRef] [PubMed]
  9. L. B. Au, L. Solymar, “Space-charge field in photorefractive materials at large modulation,” Opt. Lett. 13, 660–662 (1988).
    [CrossRef] [PubMed]
  10. Z. Q. Wang, W. A. Gillespie, C. M. Cartwright, “Holographic-recording improvement in a bismuth silicon oxide crystal by the moving-grating technique,” Appl. Opt. 33, 7627–7633 (1994).
    [CrossRef] [PubMed]
  11. G. A. Brost, K. M. Magde, J. J. Larkin, M. T. Harris, “Modulation dependence of the photorefractive response with moving gratings: numerical analysis and experiment,” J. Opt. Soc. Am. B 11, 1764–1772 (1994).
    [CrossRef]
  12. Z. Q. Wang, C. M. Cartwright, W. A. Gillespie, N. J. Cook, “Effects of optical bias on moving gratings in bismuth silicon oxide at large fringe modulation,” Appl. Opt. 35, 3829–3834 (1996).
    [CrossRef] [PubMed]
  13. Z. Q. Wang, H. Zhang, C. M. Cartwright, M. S. Ding, N. J. Cook, W. A. Gillespie, “Edge enhancement by use of moving gratings in a bismuth silicon oxide crystal and its application to optical correlation,” Appl. Opt. 37, 4449–4456 (1998).
    [CrossRef]
  14. J. Feinberg, “Real-time edge-enhancement using the photorefractive effect,” Opt. Lett. 5, 330–332 (1980).
    [CrossRef]
  15. N. A. Vainos, R. W. Eason, “Real time edge enhancement by active spatial filtering via five wave mixing in photorefractive BSO,” Opt. Commun. 59, 167–172 (1986).
    [CrossRef]
  16. Z. Q. Wang, C. Soutar, W. A. Gillespie, C. M. Cartwright, “Real-time edge-enhanced object correlation using incoherent readout of photorefractive BSO,” Optik 93, 157–162 (1993).

1998 (1)

1996 (1)

1994 (2)

1993 (1)

Z. Q. Wang, C. Soutar, W. A. Gillespie, C. M. Cartwright, “Real-time edge-enhanced object correlation using incoherent readout of photorefractive BSO,” Optik 93, 157–162 (1993).

1992 (1)

C. Soutar, Z. Q. Wang, C. M. Cartwright, W. A. Gillespie, “Real-time optical intensity correlator using photorefractive BSO and a liquid crystal television,” J. Mod. Opt. 39, 761–769 (1992).
[CrossRef]

1989 (1)

J. A. Khoury, G. Hussain, R. W. Eason, “Optical tracking and motion detection using photorefractive Bi12SiO20,” Opt. Commun. 71, 138–144 (1989).
[CrossRef]

1988 (2)

G. Hamel de Monchenault, J. P. Huignard, “Two-wave mixing with time modulated signal in Bi12SiO20 theory and application to homodyne wave front detection,” J. Appl. Phys. 63, 624–627 (1988).
[CrossRef]

L. B. Au, L. Solymar, “Space-charge field in photorefractive materials at large modulation,” Opt. Lett. 13, 660–662 (1988).
[CrossRef] [PubMed]

1986 (1)

N. A. Vainos, R. W. Eason, “Real time edge enhancement by active spatial filtering via five wave mixing in photorefractive BSO,” Opt. Commun. 59, 167–172 (1986).
[CrossRef]

1985 (1)

Ph. Réfrégier, L. Solymar, H. Rajbenbach, J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

1984 (1)

1981 (2)

J. P. Huignard, A. Marrakchi, “Coherent signal beam amplification in two-wave mixing experiments with photorefractive Bi12SiO20 crystals,” Opt. Commun. 38, 249–254 (1981).
[CrossRef]

L. Pichon, J. P. Huignard, “Dynamic joint Fourier transfer correlator by Bragg diffraction in photorefractive BSO crystals,” Opt. Commun. 36, 277–280 (1981).
[CrossRef]

1980 (1)

Au, L. B.

L. B. Au, L. Solymar, “Space-charge field in photorefractive materials at large modulation,” Opt. Lett. 13, 660–662 (1988).
[CrossRef] [PubMed]

Brost, G. A.

Cartwright, C. M.

Connors, L.

L. Connors, P. Foote, T. J. Hall, R. Jaura, L. C. Laycock, M. W. McCall, C. R. Petts, “Fidelity of real-time correlation by four-wave mixing,” in 1984 European Conference on Optics, Optical Systems, and Applications, B. Bolger, H. A. Ferwerda, eds., Proc. SPIE492, 361–369 (1984).
[CrossRef]

Cook, N. J.

Ding, M. S.

Eason, R. W.

J. A. Khoury, G. Hussain, R. W. Eason, “Optical tracking and motion detection using photorefractive Bi12SiO20,” Opt. Commun. 71, 138–144 (1989).
[CrossRef]

N. A. Vainos, R. W. Eason, “Real time edge enhancement by active spatial filtering via five wave mixing in photorefractive BSO,” Opt. Commun. 59, 167–172 (1986).
[CrossRef]

Feinberg, J.

Foote, P.

L. Connors, P. Foote, T. J. Hall, R. Jaura, L. C. Laycock, M. W. McCall, C. R. Petts, “Fidelity of real-time correlation by four-wave mixing,” in 1984 European Conference on Optics, Optical Systems, and Applications, B. Bolger, H. A. Ferwerda, eds., Proc. SPIE492, 361–369 (1984).
[CrossRef]

Gillespie, W. A.

Hall, T. J.

L. Connors, P. Foote, T. J. Hall, R. Jaura, L. C. Laycock, M. W. McCall, C. R. Petts, “Fidelity of real-time correlation by four-wave mixing,” in 1984 European Conference on Optics, Optical Systems, and Applications, B. Bolger, H. A. Ferwerda, eds., Proc. SPIE492, 361–369 (1984).
[CrossRef]

Hamel de Monchenault, G.

G. Hamel de Monchenault, J. P. Huignard, “Two-wave mixing with time modulated signal in Bi12SiO20 theory and application to homodyne wave front detection,” J. Appl. Phys. 63, 624–627 (1988).
[CrossRef]

Harris, M. T.

Huignard, J. P.

G. Hamel de Monchenault, J. P. Huignard, “Two-wave mixing with time modulated signal in Bi12SiO20 theory and application to homodyne wave front detection,” J. Appl. Phys. 63, 624–627 (1988).
[CrossRef]

Ph. Réfrégier, L. Solymar, H. Rajbenbach, J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

H. Rajbenbach, J. P. Huignard, Ph. Réfrégier, “Amplified phase-conjugate beam reflection by four-wave mixing with photorefractive Bi12SiO20 crystals,” Opt. Lett. 9, 558–560 (1984).
[CrossRef] [PubMed]

L. Pichon, J. P. Huignard, “Dynamic joint Fourier transfer correlator by Bragg diffraction in photorefractive BSO crystals,” Opt. Commun. 36, 277–280 (1981).
[CrossRef]

J. P. Huignard, A. Marrakchi, “Coherent signal beam amplification in two-wave mixing experiments with photorefractive Bi12SiO20 crystals,” Opt. Commun. 38, 249–254 (1981).
[CrossRef]

Hussain, G.

J. A. Khoury, G. Hussain, R. W. Eason, “Optical tracking and motion detection using photorefractive Bi12SiO20,” Opt. Commun. 71, 138–144 (1989).
[CrossRef]

Jaura, R.

L. Connors, P. Foote, T. J. Hall, R. Jaura, L. C. Laycock, M. W. McCall, C. R. Petts, “Fidelity of real-time correlation by four-wave mixing,” in 1984 European Conference on Optics, Optical Systems, and Applications, B. Bolger, H. A. Ferwerda, eds., Proc. SPIE492, 361–369 (1984).
[CrossRef]

Khoury, J. A.

J. A. Khoury, G. Hussain, R. W. Eason, “Optical tracking and motion detection using photorefractive Bi12SiO20,” Opt. Commun. 71, 138–144 (1989).
[CrossRef]

Larkin, J. J.

Laycock, L. C.

L. Connors, P. Foote, T. J. Hall, R. Jaura, L. C. Laycock, M. W. McCall, C. R. Petts, “Fidelity of real-time correlation by four-wave mixing,” in 1984 European Conference on Optics, Optical Systems, and Applications, B. Bolger, H. A. Ferwerda, eds., Proc. SPIE492, 361–369 (1984).
[CrossRef]

Magde, K. M.

Marrakchi, A.

J. P. Huignard, A. Marrakchi, “Coherent signal beam amplification in two-wave mixing experiments with photorefractive Bi12SiO20 crystals,” Opt. Commun. 38, 249–254 (1981).
[CrossRef]

McCall, M. W.

L. Connors, P. Foote, T. J. Hall, R. Jaura, L. C. Laycock, M. W. McCall, C. R. Petts, “Fidelity of real-time correlation by four-wave mixing,” in 1984 European Conference on Optics, Optical Systems, and Applications, B. Bolger, H. A. Ferwerda, eds., Proc. SPIE492, 361–369 (1984).
[CrossRef]

Petts, C. R.

L. Connors, P. Foote, T. J. Hall, R. Jaura, L. C. Laycock, M. W. McCall, C. R. Petts, “Fidelity of real-time correlation by four-wave mixing,” in 1984 European Conference on Optics, Optical Systems, and Applications, B. Bolger, H. A. Ferwerda, eds., Proc. SPIE492, 361–369 (1984).
[CrossRef]

Pichon, L.

L. Pichon, J. P. Huignard, “Dynamic joint Fourier transfer correlator by Bragg diffraction in photorefractive BSO crystals,” Opt. Commun. 36, 277–280 (1981).
[CrossRef]

Rajbenbach, H.

Ph. Réfrégier, L. Solymar, H. Rajbenbach, J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

H. Rajbenbach, J. P. Huignard, Ph. Réfrégier, “Amplified phase-conjugate beam reflection by four-wave mixing with photorefractive Bi12SiO20 crystals,” Opt. Lett. 9, 558–560 (1984).
[CrossRef] [PubMed]

Réfrégier, Ph.

Ph. Réfrégier, L. Solymar, H. Rajbenbach, J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

H. Rajbenbach, J. P. Huignard, Ph. Réfrégier, “Amplified phase-conjugate beam reflection by four-wave mixing with photorefractive Bi12SiO20 crystals,” Opt. Lett. 9, 558–560 (1984).
[CrossRef] [PubMed]

Solymar, L.

L. B. Au, L. Solymar, “Space-charge field in photorefractive materials at large modulation,” Opt. Lett. 13, 660–662 (1988).
[CrossRef] [PubMed]

Ph. Réfrégier, L. Solymar, H. Rajbenbach, J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

Soutar, C.

Z. Q. Wang, C. Soutar, W. A. Gillespie, C. M. Cartwright, “Real-time edge-enhanced object correlation using incoherent readout of photorefractive BSO,” Optik 93, 157–162 (1993).

C. Soutar, Z. Q. Wang, C. M. Cartwright, W. A. Gillespie, “Real-time optical intensity correlator using photorefractive BSO and a liquid crystal television,” J. Mod. Opt. 39, 761–769 (1992).
[CrossRef]

Vainos, N. A.

N. A. Vainos, R. W. Eason, “Real time edge enhancement by active spatial filtering via five wave mixing in photorefractive BSO,” Opt. Commun. 59, 167–172 (1986).
[CrossRef]

Wang, Z. Q.

Zhang, H.

Appl. Opt. (3)

J. Appl. Phys. (2)

Ph. Réfrégier, L. Solymar, H. Rajbenbach, J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

G. Hamel de Monchenault, J. P. Huignard, “Two-wave mixing with time modulated signal in Bi12SiO20 theory and application to homodyne wave front detection,” J. Appl. Phys. 63, 624–627 (1988).
[CrossRef]

J. Mod. Opt. (1)

C. Soutar, Z. Q. Wang, C. M. Cartwright, W. A. Gillespie, “Real-time optical intensity correlator using photorefractive BSO and a liquid crystal television,” J. Mod. Opt. 39, 761–769 (1992).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

L. B. Au, L. Solymar, “Space-charge field in photorefractive materials at large modulation,” Opt. Lett. 13, 660–662 (1988).
[CrossRef] [PubMed]

Opt. Commun. (4)

N. A. Vainos, R. W. Eason, “Real time edge enhancement by active spatial filtering via five wave mixing in photorefractive BSO,” Opt. Commun. 59, 167–172 (1986).
[CrossRef]

J. A. Khoury, G. Hussain, R. W. Eason, “Optical tracking and motion detection using photorefractive Bi12SiO20,” Opt. Commun. 71, 138–144 (1989).
[CrossRef]

L. Pichon, J. P. Huignard, “Dynamic joint Fourier transfer correlator by Bragg diffraction in photorefractive BSO crystals,” Opt. Commun. 36, 277–280 (1981).
[CrossRef]

J. P. Huignard, A. Marrakchi, “Coherent signal beam amplification in two-wave mixing experiments with photorefractive Bi12SiO20 crystals,” Opt. Commun. 38, 249–254 (1981).
[CrossRef]

Opt. Lett. (2)

Optik (1)

Z. Q. Wang, C. Soutar, W. A. Gillespie, C. M. Cartwright, “Real-time edge-enhanced object correlation using incoherent readout of photorefractive BSO,” Optik 93, 157–162 (1993).

Other (1)

L. Connors, P. Foote, T. J. Hall, R. Jaura, L. C. Laycock, M. W. McCall, C. R. Petts, “Fidelity of real-time correlation by four-wave mixing,” in 1984 European Conference on Optics, Optical Systems, and Applications, B. Bolger, H. A. Ferwerda, eds., Proc. SPIE492, 361–369 (1984).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental configuration of four-wave mixing in BSO crystal with moving gratings. Ar+, argon-ion laser; BE, beam expander; PBS, polarizing beam splitter; HWP, half-wave plate; P, polarizer; M, mirror; PM, piezomirror; I, incident beam; E, electric field.

Fig. 2
Fig. 2

Reflectivity versus fringe velocity at different incident-beam ratio with moving gratings.

Fig. 3
Fig. 3

Characteristics of optimum fringe velocity versus total light intensity.

Fig. 4
Fig. 4

Variation of reflectivity as pump-beam ratio for different incident-beam ratio with moving gratings.

Fig. 5
Fig. 5

Enhancement of reflectivity as the incident-beam ratio by moving gratings.

Fig. 6
Fig. 6

Enhancement of reflectivity as a function of fringe spacing.

Fig. 7
Fig. 7

Optical system for edge-enhanced correlation by moving gratings and four-wave mixing. IP, input plane; L, lens; PBS, polarizing beam splitter; I, incident beam; PC, personal computer.

Fig. 8
Fig. 8

Experimental results of edge enhancement: (a) reflection without moving gratings, (b) corresponding cross section of (a), (c) reflection with moving gratings, (d) corresponding cross section of (c).

Fig. 9
Fig. 9

Experimental autocorrelation results: (a) autocorrelation without moving gratings, (b) corresponding 3-D plot of (a), (c) autocorrelation with moving gratings, (d) corresponding 3-D plot of (c).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ν = N Λ / t ,

Metrics