Abstract

We discuss the optical recording and relaxation of low spatial frequency gratings and negative microlenses by a dyed polyacrylamide gel. An analysis of the grating diffraction efficiency and the focal distance of microlenses is shown. A study of the evolution of the surface modulation of both types of elements with an interference microscope is also included.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Vdovin, S. Middelhoek, P. M. Sarro, “Technology and applications of micromachined silicon adaptive mirrors,” Opt. Eng. 36, 1382–1390 (1997).
    [CrossRef]
  2. G. Robert, A. Coville, L. Babadjian, S. Spirkovitch, “Active micromirror: a new adaptive optical microcomponent,” in 18th Congress of the International Commission for Optics, A. J. Glass, J. W. Goodman, M. Chang, A. H. Guenther, T. Asakura, S. Hokkaido, eds., Proc. SPIE3749, 54–55 (1999).
    [CrossRef]
  3. M. C. Rogermann, V. P. Lukai, V. E. Zuev, “Adaptive optics: introduction to the feature issue,” in Feature on Adaptive Optics, V. P. Luken, V. E. Zuev, M. Roggeman, eds., Appl. Opt.37, 4523–4524 (1998).
  4. Z. Zeng, N. Ling, W. Jiang, “The investigation of controlling laser focal profile by deformable mirror and wave-front sensor,” J. Mod. Opt. 46, 341–348 (1999).
  5. J. Lewandowski, B. Mongenau, M. Cormier, J. Lapierre, “Infrared holographic interferometry,” Appl. Opt. 25, 3291–3296 (1986).
    [CrossRef]
  6. E. F. Borra, “The liquid-mirror telescope as a viable astronomical tool,” J. R. Astron. Soc. Can. 7b, 245–256 (1986).
  7. T. Tanaka, “Collapse of gels and the critical endpoint,” Phys. Rev. Lett. 40, 820–823 (1978).
    [CrossRef]
  8. J. A. Mauro, ed., Optical Engineering Handbook (General Electric Company, Scranton, Pa., 1963), Sec. 6, pp. 15–18.
  9. G. Da Costa, J. Calatroni, “Transient deformation of liquid surfaces by laser-induced thermocapillarity,” Appl. Opt. 18, 233–235 (1979).
    [CrossRef]
  10. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1988), Chap. 7.
  11. S. Calixto, M. S. Scholl, “Relief optical microelements fabricated with dichromated gelatin,” Appl. Opt. 36, 2101–2106 (1997).
    [CrossRef] [PubMed]

1999 (1)

Z. Zeng, N. Ling, W. Jiang, “The investigation of controlling laser focal profile by deformable mirror and wave-front sensor,” J. Mod. Opt. 46, 341–348 (1999).

1997 (2)

G. Vdovin, S. Middelhoek, P. M. Sarro, “Technology and applications of micromachined silicon adaptive mirrors,” Opt. Eng. 36, 1382–1390 (1997).
[CrossRef]

S. Calixto, M. S. Scholl, “Relief optical microelements fabricated with dichromated gelatin,” Appl. Opt. 36, 2101–2106 (1997).
[CrossRef] [PubMed]

1986 (2)

J. Lewandowski, B. Mongenau, M. Cormier, J. Lapierre, “Infrared holographic interferometry,” Appl. Opt. 25, 3291–3296 (1986).
[CrossRef]

E. F. Borra, “The liquid-mirror telescope as a viable astronomical tool,” J. R. Astron. Soc. Can. 7b, 245–256 (1986).

1979 (1)

1978 (1)

T. Tanaka, “Collapse of gels and the critical endpoint,” Phys. Rev. Lett. 40, 820–823 (1978).
[CrossRef]

Babadjian, L.

G. Robert, A. Coville, L. Babadjian, S. Spirkovitch, “Active micromirror: a new adaptive optical microcomponent,” in 18th Congress of the International Commission for Optics, A. J. Glass, J. W. Goodman, M. Chang, A. H. Guenther, T. Asakura, S. Hokkaido, eds., Proc. SPIE3749, 54–55 (1999).
[CrossRef]

Borra, E. F.

E. F. Borra, “The liquid-mirror telescope as a viable astronomical tool,” J. R. Astron. Soc. Can. 7b, 245–256 (1986).

Calatroni, J.

Calixto, S.

Cormier, M.

Coville, A.

G. Robert, A. Coville, L. Babadjian, S. Spirkovitch, “Active micromirror: a new adaptive optical microcomponent,” in 18th Congress of the International Commission for Optics, A. J. Glass, J. W. Goodman, M. Chang, A. H. Guenther, T. Asakura, S. Hokkaido, eds., Proc. SPIE3749, 54–55 (1999).
[CrossRef]

Da Costa, G.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1988), Chap. 7.

Jiang, W.

Z. Zeng, N. Ling, W. Jiang, “The investigation of controlling laser focal profile by deformable mirror and wave-front sensor,” J. Mod. Opt. 46, 341–348 (1999).

Lapierre, J.

Lewandowski, J.

Ling, N.

Z. Zeng, N. Ling, W. Jiang, “The investigation of controlling laser focal profile by deformable mirror and wave-front sensor,” J. Mod. Opt. 46, 341–348 (1999).

Lukai, V. P.

M. C. Rogermann, V. P. Lukai, V. E. Zuev, “Adaptive optics: introduction to the feature issue,” in Feature on Adaptive Optics, V. P. Luken, V. E. Zuev, M. Roggeman, eds., Appl. Opt.37, 4523–4524 (1998).

Middelhoek, S.

G. Vdovin, S. Middelhoek, P. M. Sarro, “Technology and applications of micromachined silicon adaptive mirrors,” Opt. Eng. 36, 1382–1390 (1997).
[CrossRef]

Mongenau, B.

Robert, G.

G. Robert, A. Coville, L. Babadjian, S. Spirkovitch, “Active micromirror: a new adaptive optical microcomponent,” in 18th Congress of the International Commission for Optics, A. J. Glass, J. W. Goodman, M. Chang, A. H. Guenther, T. Asakura, S. Hokkaido, eds., Proc. SPIE3749, 54–55 (1999).
[CrossRef]

Rogermann, M. C.

M. C. Rogermann, V. P. Lukai, V. E. Zuev, “Adaptive optics: introduction to the feature issue,” in Feature on Adaptive Optics, V. P. Luken, V. E. Zuev, M. Roggeman, eds., Appl. Opt.37, 4523–4524 (1998).

Sarro, P. M.

G. Vdovin, S. Middelhoek, P. M. Sarro, “Technology and applications of micromachined silicon adaptive mirrors,” Opt. Eng. 36, 1382–1390 (1997).
[CrossRef]

Scholl, M. S.

Spirkovitch, S.

G. Robert, A. Coville, L. Babadjian, S. Spirkovitch, “Active micromirror: a new adaptive optical microcomponent,” in 18th Congress of the International Commission for Optics, A. J. Glass, J. W. Goodman, M. Chang, A. H. Guenther, T. Asakura, S. Hokkaido, eds., Proc. SPIE3749, 54–55 (1999).
[CrossRef]

Tanaka, T.

T. Tanaka, “Collapse of gels and the critical endpoint,” Phys. Rev. Lett. 40, 820–823 (1978).
[CrossRef]

Vdovin, G.

G. Vdovin, S. Middelhoek, P. M. Sarro, “Technology and applications of micromachined silicon adaptive mirrors,” Opt. Eng. 36, 1382–1390 (1997).
[CrossRef]

Zeng, Z.

Z. Zeng, N. Ling, W. Jiang, “The investigation of controlling laser focal profile by deformable mirror and wave-front sensor,” J. Mod. Opt. 46, 341–348 (1999).

Zuev, V. E.

M. C. Rogermann, V. P. Lukai, V. E. Zuev, “Adaptive optics: introduction to the feature issue,” in Feature on Adaptive Optics, V. P. Luken, V. E. Zuev, M. Roggeman, eds., Appl. Opt.37, 4523–4524 (1998).

Appl. Opt. (3)

J. Mod. Opt. (1)

Z. Zeng, N. Ling, W. Jiang, “The investigation of controlling laser focal profile by deformable mirror and wave-front sensor,” J. Mod. Opt. 46, 341–348 (1999).

J. R. Astron. Soc. Can. (1)

E. F. Borra, “The liquid-mirror telescope as a viable astronomical tool,” J. R. Astron. Soc. Can. 7b, 245–256 (1986).

Opt. Eng. (1)

G. Vdovin, S. Middelhoek, P. M. Sarro, “Technology and applications of micromachined silicon adaptive mirrors,” Opt. Eng. 36, 1382–1390 (1997).
[CrossRef]

Phys. Rev. Lett. (1)

T. Tanaka, “Collapse of gels and the critical endpoint,” Phys. Rev. Lett. 40, 820–823 (1978).
[CrossRef]

Other (4)

J. A. Mauro, ed., Optical Engineering Handbook (General Electric Company, Scranton, Pa., 1963), Sec. 6, pp. 15–18.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1988), Chap. 7.

G. Robert, A. Coville, L. Babadjian, S. Spirkovitch, “Active micromirror: a new adaptive optical microcomponent,” in 18th Congress of the International Commission for Optics, A. J. Glass, J. W. Goodman, M. Chang, A. H. Guenther, T. Asakura, S. Hokkaido, eds., Proc. SPIE3749, 54–55 (1999).
[CrossRef]

M. C. Rogermann, V. P. Lukai, V. E. Zuev, “Adaptive optics: introduction to the feature issue,” in Feature on Adaptive Optics, V. P. Luken, V. E. Zuev, M. Roggeman, eds., Appl. Opt.37, 4523–4524 (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Transmittance as a function of wavelength for polyacrylamide gels with a thicknesses of 5.8 mm. Parameter is the amount of dye for each gel.

Fig. 2
Fig. 2

Gels’ relief depth as a function of exposure time for four different solutions.

Fig. 3
Fig. 3

Video frames showing the relief of a gel layer (solution 8): (a) before recording illumination and (b) after 25 s illumination with a ribbon-shaped argon-ion laser light.

Fig. 4
Fig. 4

Diffraction efficiency as a function of exposure time during recording of an interference pattern of 4 lines/mm by gel. Five power densities are shown.

Fig. 5
Fig. 5

Gel response to three different spatial frequencies of the interference pattern. Power density of the writing beams was of 71 mW/cm2 in all cases.

Fig. 6
Fig. 6

Gel relief growth at different times during illumination with an argon-ion laser interference pattern of 4 lines/mm. (a) Fringes from the interference microscope are straight, implying that the gel surface before illumination was flat. (b) Sinusoidal variation in the fringes after a 5-s exposure time. (c) Variation after 15 s of exposure time.

Fig. 7
Fig. 7

Relief depth for a 4-line/mm grating during growth and relaxation. Three different power densities are shown.

Fig. 8
Fig. 8

First diffracted orders besides the masked zero order for a 10-line/mm grating. Power density of the writing beams was 36 mW/cm2.

Fig. 9
Fig. 9

Behavior of focal distance as a function of relaxation time when three lenses with different diameters were investigated.

Fig. 10
Fig. 10

Images observed in the relaxation step of a microlens with a 2-mm diameter. (a) Microlens had a focal distance f = -19 mm, 30 s after the end of illumination. (b) Focal distance f = -27 mm, after 4 min. (c) Focal distance f = -41 mm, after 12 min. Note the changes in contrast and magnification among the images.

Fig. 11
Fig. 11

Interference pattern of a microlens, given by an interference microscope. It was taken after 40 s of exposure time.

Tables (1)

Tables Icon

Table 1 Standard Acrylamide Gel Formulation

Metrics