Abstract

Although the concept of an artificial compound eye has been discussed in the literature, its optical arrangement has never been widely adopted for optical design. A design is presented for a tunable gradient-index microlens array, believed to be new, induced electro-optically inside a cylindrical shell. The transparent electrodes on the both sides of the shell are positioned such that the electrodes on the opposite side compensate the phase delay from the electrodes on the front side for a normally incident plane wave, thus suppressing the intrinsic electrode diffraction for the device without applied voltage. The original technique of the electric field calculation was developed to analyze the induced refractive index inside the shell for two types of electro-optic (EO) ceramics: with linear and with quadratic EO effects. For the linear effect it was shown that for given EO coefficients, electric field strength and intrinsic refractive index, the electrode number should exceed a certain amount to make the focal distance less than the cylinder radius. The quadratic effect provides higher sensitivity to the type of the diffracted wave polarization. It was shown how the quadratic coefficient ratio R 12/R 11 affects the focal-length difference between TE and TM light polarization.

© 2000 Optical Society of America

Full Article  |  PDF Article
Related Articles
Adjustable electro-optic microlens with two concentric ring electrodes

Mykola Kulishov
Opt. Lett. 23(24) 1936-1938 (1998)

Tunable electro-optic microlens array. I. Planar geometry

Mykola Kulishov
Appl. Opt. 39(14) 2332-2339 (2000)

Artificial apposition compound eye fabricated by micro-optics technology

Jacques Duparré, Peter Dannberg, Peter Schreiber, Andreas Bräuer, and Andreas Tünnermann
Appl. Opt. 43(22) 4303-4310 (2004)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (25)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription