Abstract

We present an imaging technique for the correction of geometrical effects in fluorescence measurement of optically thick, turbid media such as human tissue. Specifically, we use the cross-polarization method to reject specular reflection and enhance the diffusive backscattering of polarized fluorescence excitation light from the turbid media. We correct the nonuniformity of the image field caused by the excitation-and-collection geometry of a fluorescence imaging system by normalizing the fluorescence image to the cross-polarized reflection image. The ratio image provides a map of relative fluorescence yield, defined as the ratio of emerging fluorescence power to incident excitation, over the surface of an imaged homogeneous turbid medium when fluorescence excitation-and-collection geometries vary in a wide range. We investigate the mechanism of ratio imaging by using Monte Carlo modeling. Our findings show that this technique could have a potential use in the detection of early cancer, which usually starts from a superficial layer of tissue, based on the contrast in the tissue fluorescence of an early lesion and of the surrounding normal tissue.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano, D. B. Tat, J. Cordero, P. Tomashefsky, F. W. Longo, M. A. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. QE-20, 1507–1511 (1984).
    [CrossRef]
  2. A. E. Profio, D. R. Doiron, J. Sarnaik, “Fluorometer for endoscopic diagnosis of tumors,” Med. Phys. 11, 516–520 (1984).
    [CrossRef] [PubMed]
  3. C. Kittrell, P. L. Willett, C. de los Santos-Pacheo, N. B. Ratliff, J. R. Kramer, E. G. Malk, M. S. Feld, “Diagnosis of fibrous arterial atherosclerosis using fluorescence,” Appl. Opt. 24, 2280–2281 (1985).
    [CrossRef] [PubMed]
  4. P. Lenz, “Endoscopic fluorescence detector,” Rev. Sci. Instrum. 59, 930–933 (1988).
    [CrossRef]
  5. R. M. Cothren, R. R. Richards-Kortum, M. V. Sivak, M. Fitzmaurice, R. P. Rava, G. A. Boyce, G. B. Hayes, M. Doxtader, R. Blackman, T. Ivanc, M. S. Feld, R. E. Petras, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
    [CrossRef] [PubMed]
  6. J. Hung, S. Lam, J. C. LeRiche, B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg. Med. 11, 99–105 (1991).
    [CrossRef] [PubMed]
  7. N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, R. Richards-Kortum, “Fluorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia (CIN),” Gynecol. Oncol. 52, 31–38 (1994).
    [CrossRef] [PubMed]
  8. J. Qu, C. MacAulay, S. Lam, B. Palcic, “Laser-induced fluorescence spectroscopy at endoscopy: tissue optics, Monte Carlo modeling, and in vivo measurements,” Opt. Eng. 34, 3334–3343 (1995).
    [CrossRef]
  9. S. Warren, K. Pope, Y. Yazdi, A. J. Welch, S. Thomsen, A. L. Johnston, M. J. Davis, R. Richards-Kortum, “Combined ultrasound and fluorescence spectroscopy for physico-chemical imaging of atherosclerosis,” IEEE Trans. Biomed. Eng. 42, 121–132 (1995).
    [CrossRef] [PubMed]
  10. T. D. Wang, J. van Dam, J. M. Crawford, E. A. Preisinger, Y. Wang, M. S. Feld, “Fluorescence endoscopic imaging of human colonic adenomas,” Gastroenterology 111, 1182–1191 (1996).
    [CrossRef] [PubMed]
  11. G. A. Wagnieres, A. P. Studzinski, H. E. van den Bergh, “An endoscopic fluorescence imaging system for simultaneous visual examination and photodetection of cancers,” Rev. Sci. Instrum. 68, 203–212 (1997).
    [CrossRef]
  12. K. Tumer, N. Ramanujam, J. Ghosh, R. Richards-Kortum, “Ensembles of radial basis function networks for spectroscopic detection of cervical precancer,” IEEE Trans. Biomed. Eng. 45, 953–961 (1998).
    [CrossRef] [PubMed]
  13. J. Wu, M. S. Feld, R. P. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32, 3585–3595 (1993).
    [CrossRef] [PubMed]
  14. C. M. Gardner, S. L. Jacques, A. J. Welch, “Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence,” Appl. Opt. 35, 1780–1792 (1996).
    [CrossRef] [PubMed]
  15. L. Wang, S. L. Jacques, “Monte Carlo modeling of light transport in multilayered tissue in standard C” (University of Texas, Houston, Tex., 1992).
  16. W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [CrossRef]
  17. S. G. Demos, R. R. Alfano, “Optical polarization imaging,” Appl. Opt. 36, 150–155 (1997).
    [CrossRef] [PubMed]
  18. S. G. Demos, A. J. Papadopoulos, H. Savage, A. S. Heerdt, S. Schantz, R. R. Alfano, “Polarization filter for biomedical tissue optical imaging,” Photochem. Photobiol. 66, 821–825 (1997).
    [CrossRef]
  19. L. T. Perelman, V. Backman, J. Wu, R. R. Dasari, M. S. Feld, “Spectroscopic diagnostics of epithelial tissues with polarized light,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 474–479 (1999).
    [CrossRef]
  20. J. M. Schmitt, A. H. Gandjbakhche, R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt. 31, 6535–6546 (1992).
    [CrossRef] [PubMed]
  21. G. D. Lewis, D. L. Jordan, P. J. Roberts, “Backscattering target detection in a turbid medium by polarization discrimination,” Appl. Opt. 38, 3937–3944 (1999).
    [CrossRef]
  22. S. Jutamulia, T. Asakura, “Reduction of coherent noise using various artificial incoherent sources,” Optik 70, 52–57 (1985).
  23. R. Smith, S. Ahmad, A. Voudas, J. Spencer, A. Russel, G. R. Jones, “Chromatic modulation for optical fiber sensing electromagnetic and speckle noise analysis,” J. Mod. Opt. 39, 2301–2314 (1992).
    [CrossRef]
  24. T. Iwai, T. Asakura, “Speckle reduction in coherent information processing,” Proc. IEEE 84, 765–781 (1996).
    [CrossRef]
  25. B. W. Pogue, L. Lilge, M. S. Patterson, B. C. Wilson, T. Hasan, “Absorbed photodynamic dose from pulsed versus continuous wave light examined with tissue-simulating dosimeters,” Appl. Opt. 36, 7257–7269 (1997).
    [CrossRef]
  26. L. Wang, X. Zhao, “Ultrasound-modulated optical tomography of absorbing objects buried in dense tissue-simulating turbid media,” Appl. Opt. 36, 7277–7282 (1997).
    [CrossRef]
  27. S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).
  28. W. Pickering, S. A. Prahl, N. van Wierington, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
    [CrossRef] [PubMed]
  29. J. Qu, C. MacAulay, S. Lam, B. Palcic, “Optical properties of normal and carcinomatous bronchial tissue,” Appl. Opt. 33, 7397–7405 (1994).
    [CrossRef] [PubMed]
  30. A. J. Drukin, S. Jaikumar, R. Richards-Kortum, “Optically dilute, absorbing, and turbid phantoms for fluorescence spectroscopy of homogeneous and inhomogeneous samples,” Appl. Spectrosc. 47, 2114–2121 (1993).
    [CrossRef]
  31. M. Kohl, M. Essenpreis, M. Cope, “The influence of glucose upon the transport of light in tissue-simulating phantoms,” Phys. Med. Biol. 40, 1267–1287 (1995).
    [CrossRef] [PubMed]
  32. D. W. Leonard, K. M. Meek, “Refractive indices of the collagen fibrils and extrafibrillar material of the corneal stroma,” Biophys. J. 72, 1382–1387 (1997).
    [CrossRef] [PubMed]
  33. E. J. van Kampen, W. G. Zilstra, “Determination of hemoglobin and its derivatives,” in Advances in Clinical Chemistry, H. Sobotka, C. P. Stewart, eds. (Academic, New York, 1965), Vol. 8, pp 158–187.
  34. O. W. van Assendelft, Spectrophotometry of haemoglobin derivatives (Royal Vangorcum, Assen, The Netherlands, 1970).
  35. L. Wang, S. L. Jacques, “Analysis of diffusion theory and similarity relations,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 107–116 (1993).
    [CrossRef]

1999 (1)

1998 (1)

K. Tumer, N. Ramanujam, J. Ghosh, R. Richards-Kortum, “Ensembles of radial basis function networks for spectroscopic detection of cervical precancer,” IEEE Trans. Biomed. Eng. 45, 953–961 (1998).
[CrossRef] [PubMed]

1997 (6)

S. G. Demos, A. J. Papadopoulos, H. Savage, A. S. Heerdt, S. Schantz, R. R. Alfano, “Polarization filter for biomedical tissue optical imaging,” Photochem. Photobiol. 66, 821–825 (1997).
[CrossRef]

G. A. Wagnieres, A. P. Studzinski, H. E. van den Bergh, “An endoscopic fluorescence imaging system for simultaneous visual examination and photodetection of cancers,” Rev. Sci. Instrum. 68, 203–212 (1997).
[CrossRef]

B. W. Pogue, L. Lilge, M. S. Patterson, B. C. Wilson, T. Hasan, “Absorbed photodynamic dose from pulsed versus continuous wave light examined with tissue-simulating dosimeters,” Appl. Opt. 36, 7257–7269 (1997).
[CrossRef]

D. W. Leonard, K. M. Meek, “Refractive indices of the collagen fibrils and extrafibrillar material of the corneal stroma,” Biophys. J. 72, 1382–1387 (1997).
[CrossRef] [PubMed]

S. G. Demos, R. R. Alfano, “Optical polarization imaging,” Appl. Opt. 36, 150–155 (1997).
[CrossRef] [PubMed]

L. Wang, X. Zhao, “Ultrasound-modulated optical tomography of absorbing objects buried in dense tissue-simulating turbid media,” Appl. Opt. 36, 7277–7282 (1997).
[CrossRef]

1996 (3)

C. M. Gardner, S. L. Jacques, A. J. Welch, “Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence,” Appl. Opt. 35, 1780–1792 (1996).
[CrossRef] [PubMed]

T. D. Wang, J. van Dam, J. M. Crawford, E. A. Preisinger, Y. Wang, M. S. Feld, “Fluorescence endoscopic imaging of human colonic adenomas,” Gastroenterology 111, 1182–1191 (1996).
[CrossRef] [PubMed]

T. Iwai, T. Asakura, “Speckle reduction in coherent information processing,” Proc. IEEE 84, 765–781 (1996).
[CrossRef]

1995 (3)

M. Kohl, M. Essenpreis, M. Cope, “The influence of glucose upon the transport of light in tissue-simulating phantoms,” Phys. Med. Biol. 40, 1267–1287 (1995).
[CrossRef] [PubMed]

J. Qu, C. MacAulay, S. Lam, B. Palcic, “Laser-induced fluorescence spectroscopy at endoscopy: tissue optics, Monte Carlo modeling, and in vivo measurements,” Opt. Eng. 34, 3334–3343 (1995).
[CrossRef]

S. Warren, K. Pope, Y. Yazdi, A. J. Welch, S. Thomsen, A. L. Johnston, M. J. Davis, R. Richards-Kortum, “Combined ultrasound and fluorescence spectroscopy for physico-chemical imaging of atherosclerosis,” IEEE Trans. Biomed. Eng. 42, 121–132 (1995).
[CrossRef] [PubMed]

1994 (2)

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, R. Richards-Kortum, “Fluorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia (CIN),” Gynecol. Oncol. 52, 31–38 (1994).
[CrossRef] [PubMed]

J. Qu, C. MacAulay, S. Lam, B. Palcic, “Optical properties of normal and carcinomatous bronchial tissue,” Appl. Opt. 33, 7397–7405 (1994).
[CrossRef] [PubMed]

1993 (3)

1992 (2)

R. Smith, S. Ahmad, A. Voudas, J. Spencer, A. Russel, G. R. Jones, “Chromatic modulation for optical fiber sensing electromagnetic and speckle noise analysis,” J. Mod. Opt. 39, 2301–2314 (1992).
[CrossRef]

J. M. Schmitt, A. H. Gandjbakhche, R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt. 31, 6535–6546 (1992).
[CrossRef] [PubMed]

1991 (1)

J. Hung, S. Lam, J. C. LeRiche, B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg. Med. 11, 99–105 (1991).
[CrossRef] [PubMed]

1990 (2)

R. M. Cothren, R. R. Richards-Kortum, M. V. Sivak, M. Fitzmaurice, R. P. Rava, G. A. Boyce, G. B. Hayes, M. Doxtader, R. Blackman, T. Ivanc, M. S. Feld, R. E. Petras, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[CrossRef] [PubMed]

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

1988 (1)

P. Lenz, “Endoscopic fluorescence detector,” Rev. Sci. Instrum. 59, 930–933 (1988).
[CrossRef]

1987 (1)

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).

1985 (2)

1984 (2)

R. R. Alfano, D. B. Tat, J. Cordero, P. Tomashefsky, F. W. Longo, M. A. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. QE-20, 1507–1511 (1984).
[CrossRef]

A. E. Profio, D. R. Doiron, J. Sarnaik, “Fluorometer for endoscopic diagnosis of tumors,” Med. Phys. 11, 516–520 (1984).
[CrossRef] [PubMed]

Ahmad, S.

R. Smith, S. Ahmad, A. Voudas, J. Spencer, A. Russel, G. R. Jones, “Chromatic modulation for optical fiber sensing electromagnetic and speckle noise analysis,” J. Mod. Opt. 39, 2301–2314 (1992).
[CrossRef]

Alfano, M. A.

R. R. Alfano, D. B. Tat, J. Cordero, P. Tomashefsky, F. W. Longo, M. A. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. QE-20, 1507–1511 (1984).
[CrossRef]

Alfano, R. R.

S. G. Demos, A. J. Papadopoulos, H. Savage, A. S. Heerdt, S. Schantz, R. R. Alfano, “Polarization filter for biomedical tissue optical imaging,” Photochem. Photobiol. 66, 821–825 (1997).
[CrossRef]

S. G. Demos, R. R. Alfano, “Optical polarization imaging,” Appl. Opt. 36, 150–155 (1997).
[CrossRef] [PubMed]

R. R. Alfano, D. B. Tat, J. Cordero, P. Tomashefsky, F. W. Longo, M. A. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. QE-20, 1507–1511 (1984).
[CrossRef]

Alter, C. A.

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).

Asakura, T.

T. Iwai, T. Asakura, “Speckle reduction in coherent information processing,” Proc. IEEE 84, 765–781 (1996).
[CrossRef]

S. Jutamulia, T. Asakura, “Reduction of coherent noise using various artificial incoherent sources,” Optik 70, 52–57 (1985).

Backman, V.

L. T. Perelman, V. Backman, J. Wu, R. R. Dasari, M. S. Feld, “Spectroscopic diagnostics of epithelial tissues with polarized light,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 474–479 (1999).
[CrossRef]

Beek, J. F.

Blackman, R.

R. M. Cothren, R. R. Richards-Kortum, M. V. Sivak, M. Fitzmaurice, R. P. Rava, G. A. Boyce, G. B. Hayes, M. Doxtader, R. Blackman, T. Ivanc, M. S. Feld, R. E. Petras, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[CrossRef] [PubMed]

Bonner, R. F.

Boyce, G. A.

R. M. Cothren, R. R. Richards-Kortum, M. V. Sivak, M. Fitzmaurice, R. P. Rava, G. A. Boyce, G. B. Hayes, M. Doxtader, R. Blackman, T. Ivanc, M. S. Feld, R. E. Petras, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[CrossRef] [PubMed]

Cheong, W. F.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Cope, M.

M. Kohl, M. Essenpreis, M. Cope, “The influence of glucose upon the transport of light in tissue-simulating phantoms,” Phys. Med. Biol. 40, 1267–1287 (1995).
[CrossRef] [PubMed]

Cordero, J.

R. R. Alfano, D. B. Tat, J. Cordero, P. Tomashefsky, F. W. Longo, M. A. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. QE-20, 1507–1511 (1984).
[CrossRef]

Cothren, R. M.

R. M. Cothren, R. R. Richards-Kortum, M. V. Sivak, M. Fitzmaurice, R. P. Rava, G. A. Boyce, G. B. Hayes, M. Doxtader, R. Blackman, T. Ivanc, M. S. Feld, R. E. Petras, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[CrossRef] [PubMed]

Crawford, J. M.

T. D. Wang, J. van Dam, J. M. Crawford, E. A. Preisinger, Y. Wang, M. S. Feld, “Fluorescence endoscopic imaging of human colonic adenomas,” Gastroenterology 111, 1182–1191 (1996).
[CrossRef] [PubMed]

Dasari, R. R.

L. T. Perelman, V. Backman, J. Wu, R. R. Dasari, M. S. Feld, “Spectroscopic diagnostics of epithelial tissues with polarized light,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 474–479 (1999).
[CrossRef]

Davis, M. J.

S. Warren, K. Pope, Y. Yazdi, A. J. Welch, S. Thomsen, A. L. Johnston, M. J. Davis, R. Richards-Kortum, “Combined ultrasound and fluorescence spectroscopy for physico-chemical imaging of atherosclerosis,” IEEE Trans. Biomed. Eng. 42, 121–132 (1995).
[CrossRef] [PubMed]

de los Santos-Pacheo, C.

Demos, S. G.

S. G. Demos, A. J. Papadopoulos, H. Savage, A. S. Heerdt, S. Schantz, R. R. Alfano, “Polarization filter for biomedical tissue optical imaging,” Photochem. Photobiol. 66, 821–825 (1997).
[CrossRef]

S. G. Demos, R. R. Alfano, “Optical polarization imaging,” Appl. Opt. 36, 150–155 (1997).
[CrossRef] [PubMed]

Doiron, D. R.

A. E. Profio, D. R. Doiron, J. Sarnaik, “Fluorometer for endoscopic diagnosis of tumors,” Med. Phys. 11, 516–520 (1984).
[CrossRef] [PubMed]

Doxtader, M.

R. M. Cothren, R. R. Richards-Kortum, M. V. Sivak, M. Fitzmaurice, R. P. Rava, G. A. Boyce, G. B. Hayes, M. Doxtader, R. Blackman, T. Ivanc, M. S. Feld, R. E. Petras, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[CrossRef] [PubMed]

Drukin, A. J.

Essenpreis, M.

M. Kohl, M. Essenpreis, M. Cope, “The influence of glucose upon the transport of light in tissue-simulating phantoms,” Phys. Med. Biol. 40, 1267–1287 (1995).
[CrossRef] [PubMed]

Feld, M. S.

T. D. Wang, J. van Dam, J. M. Crawford, E. A. Preisinger, Y. Wang, M. S. Feld, “Fluorescence endoscopic imaging of human colonic adenomas,” Gastroenterology 111, 1182–1191 (1996).
[CrossRef] [PubMed]

J. Wu, M. S. Feld, R. P. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32, 3585–3595 (1993).
[CrossRef] [PubMed]

R. M. Cothren, R. R. Richards-Kortum, M. V. Sivak, M. Fitzmaurice, R. P. Rava, G. A. Boyce, G. B. Hayes, M. Doxtader, R. Blackman, T. Ivanc, M. S. Feld, R. E. Petras, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[CrossRef] [PubMed]

C. Kittrell, P. L. Willett, C. de los Santos-Pacheo, N. B. Ratliff, J. R. Kramer, E. G. Malk, M. S. Feld, “Diagnosis of fibrous arterial atherosclerosis using fluorescence,” Appl. Opt. 24, 2280–2281 (1985).
[CrossRef] [PubMed]

L. T. Perelman, V. Backman, J. Wu, R. R. Dasari, M. S. Feld, “Spectroscopic diagnostics of epithelial tissues with polarized light,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 474–479 (1999).
[CrossRef]

Fitzmaurice, M.

R. M. Cothren, R. R. Richards-Kortum, M. V. Sivak, M. Fitzmaurice, R. P. Rava, G. A. Boyce, G. B. Hayes, M. Doxtader, R. Blackman, T. Ivanc, M. S. Feld, R. E. Petras, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[CrossRef] [PubMed]

Gandjbakhche, A. H.

Gardner, C. M.

Ghosh, J.

K. Tumer, N. Ramanujam, J. Ghosh, R. Richards-Kortum, “Ensembles of radial basis function networks for spectroscopic detection of cervical precancer,” IEEE Trans. Biomed. Eng. 45, 953–961 (1998).
[CrossRef] [PubMed]

Hasan, T.

Hayes, G. B.

R. M. Cothren, R. R. Richards-Kortum, M. V. Sivak, M. Fitzmaurice, R. P. Rava, G. A. Boyce, G. B. Hayes, M. Doxtader, R. Blackman, T. Ivanc, M. S. Feld, R. E. Petras, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[CrossRef] [PubMed]

Heerdt, A. S.

S. G. Demos, A. J. Papadopoulos, H. Savage, A. S. Heerdt, S. Schantz, R. R. Alfano, “Polarization filter for biomedical tissue optical imaging,” Photochem. Photobiol. 66, 821–825 (1997).
[CrossRef]

Hung, J.

J. Hung, S. Lam, J. C. LeRiche, B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg. Med. 11, 99–105 (1991).
[CrossRef] [PubMed]

Ivanc, T.

R. M. Cothren, R. R. Richards-Kortum, M. V. Sivak, M. Fitzmaurice, R. P. Rava, G. A. Boyce, G. B. Hayes, M. Doxtader, R. Blackman, T. Ivanc, M. S. Feld, R. E. Petras, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[CrossRef] [PubMed]

Iwai, T.

T. Iwai, T. Asakura, “Speckle reduction in coherent information processing,” Proc. IEEE 84, 765–781 (1996).
[CrossRef]

Jacques, S. L.

C. M. Gardner, S. L. Jacques, A. J. Welch, “Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence,” Appl. Opt. 35, 1780–1792 (1996).
[CrossRef] [PubMed]

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).

L. Wang, S. L. Jacques, “Monte Carlo modeling of light transport in multilayered tissue in standard C” (University of Texas, Houston, Tex., 1992).

L. Wang, S. L. Jacques, “Analysis of diffusion theory and similarity relations,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 107–116 (1993).
[CrossRef]

Jaikumar, S.

Johnston, A. L.

S. Warren, K. Pope, Y. Yazdi, A. J. Welch, S. Thomsen, A. L. Johnston, M. J. Davis, R. Richards-Kortum, “Combined ultrasound and fluorescence spectroscopy for physico-chemical imaging of atherosclerosis,” IEEE Trans. Biomed. Eng. 42, 121–132 (1995).
[CrossRef] [PubMed]

Jones, G. R.

R. Smith, S. Ahmad, A. Voudas, J. Spencer, A. Russel, G. R. Jones, “Chromatic modulation for optical fiber sensing electromagnetic and speckle noise analysis,” J. Mod. Opt. 39, 2301–2314 (1992).
[CrossRef]

Jordan, D. L.

Jutamulia, S.

S. Jutamulia, T. Asakura, “Reduction of coherent noise using various artificial incoherent sources,” Optik 70, 52–57 (1985).

Kittrell, C.

Kohl, M.

M. Kohl, M. Essenpreis, M. Cope, “The influence of glucose upon the transport of light in tissue-simulating phantoms,” Phys. Med. Biol. 40, 1267–1287 (1995).
[CrossRef] [PubMed]

Kramer, J. R.

Lam, S.

J. Qu, C. MacAulay, S. Lam, B. Palcic, “Laser-induced fluorescence spectroscopy at endoscopy: tissue optics, Monte Carlo modeling, and in vivo measurements,” Opt. Eng. 34, 3334–3343 (1995).
[CrossRef]

J. Qu, C. MacAulay, S. Lam, B. Palcic, “Optical properties of normal and carcinomatous bronchial tissue,” Appl. Opt. 33, 7397–7405 (1994).
[CrossRef] [PubMed]

J. Hung, S. Lam, J. C. LeRiche, B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg. Med. 11, 99–105 (1991).
[CrossRef] [PubMed]

Lenz, P.

P. Lenz, “Endoscopic fluorescence detector,” Rev. Sci. Instrum. 59, 930–933 (1988).
[CrossRef]

Leonard, D. W.

D. W. Leonard, K. M. Meek, “Refractive indices of the collagen fibrils and extrafibrillar material of the corneal stroma,” Biophys. J. 72, 1382–1387 (1997).
[CrossRef] [PubMed]

LeRiche, J. C.

J. Hung, S. Lam, J. C. LeRiche, B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg. Med. 11, 99–105 (1991).
[CrossRef] [PubMed]

Lewis, G. D.

Lilge, L.

Longo, F. W.

R. R. Alfano, D. B. Tat, J. Cordero, P. Tomashefsky, F. W. Longo, M. A. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. QE-20, 1507–1511 (1984).
[CrossRef]

MacAulay, C.

J. Qu, C. MacAulay, S. Lam, B. Palcic, “Laser-induced fluorescence spectroscopy at endoscopy: tissue optics, Monte Carlo modeling, and in vivo measurements,” Opt. Eng. 34, 3334–3343 (1995).
[CrossRef]

J. Qu, C. MacAulay, S. Lam, B. Palcic, “Optical properties of normal and carcinomatous bronchial tissue,” Appl. Opt. 33, 7397–7405 (1994).
[CrossRef] [PubMed]

Mahadevan, A.

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, R. Richards-Kortum, “Fluorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia (CIN),” Gynecol. Oncol. 52, 31–38 (1994).
[CrossRef] [PubMed]

Malk, E. G.

Meek, K. M.

D. W. Leonard, K. M. Meek, “Refractive indices of the collagen fibrils and extrafibrillar material of the corneal stroma,” Biophys. J. 72, 1382–1387 (1997).
[CrossRef] [PubMed]

Mitchell, M. F.

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, R. Richards-Kortum, “Fluorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia (CIN),” Gynecol. Oncol. 52, 31–38 (1994).
[CrossRef] [PubMed]

Palcic, B.

J. Qu, C. MacAulay, S. Lam, B. Palcic, “Laser-induced fluorescence spectroscopy at endoscopy: tissue optics, Monte Carlo modeling, and in vivo measurements,” Opt. Eng. 34, 3334–3343 (1995).
[CrossRef]

J. Qu, C. MacAulay, S. Lam, B. Palcic, “Optical properties of normal and carcinomatous bronchial tissue,” Appl. Opt. 33, 7397–7405 (1994).
[CrossRef] [PubMed]

J. Hung, S. Lam, J. C. LeRiche, B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg. Med. 11, 99–105 (1991).
[CrossRef] [PubMed]

Papadopoulos, A. J.

S. G. Demos, A. J. Papadopoulos, H. Savage, A. S. Heerdt, S. Schantz, R. R. Alfano, “Polarization filter for biomedical tissue optical imaging,” Photochem. Photobiol. 66, 821–825 (1997).
[CrossRef]

Patterson, M. S.

Perelman, L. T.

L. T. Perelman, V. Backman, J. Wu, R. R. Dasari, M. S. Feld, “Spectroscopic diagnostics of epithelial tissues with polarized light,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 474–479 (1999).
[CrossRef]

Petras, R. E.

R. M. Cothren, R. R. Richards-Kortum, M. V. Sivak, M. Fitzmaurice, R. P. Rava, G. A. Boyce, G. B. Hayes, M. Doxtader, R. Blackman, T. Ivanc, M. S. Feld, R. E. Petras, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[CrossRef] [PubMed]

Pickering, W.

Pogue, B. W.

Pope, K.

S. Warren, K. Pope, Y. Yazdi, A. J. Welch, S. Thomsen, A. L. Johnston, M. J. Davis, R. Richards-Kortum, “Combined ultrasound and fluorescence spectroscopy for physico-chemical imaging of atherosclerosis,” IEEE Trans. Biomed. Eng. 42, 121–132 (1995).
[CrossRef] [PubMed]

Prahl, S. A.

W. Pickering, S. A. Prahl, N. van Wierington, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
[CrossRef] [PubMed]

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).

Preisinger, E. A.

T. D. Wang, J. van Dam, J. M. Crawford, E. A. Preisinger, Y. Wang, M. S. Feld, “Fluorescence endoscopic imaging of human colonic adenomas,” Gastroenterology 111, 1182–1191 (1996).
[CrossRef] [PubMed]

Profio, A. E.

A. E. Profio, D. R. Doiron, J. Sarnaik, “Fluorometer for endoscopic diagnosis of tumors,” Med. Phys. 11, 516–520 (1984).
[CrossRef] [PubMed]

Qu, J.

J. Qu, C. MacAulay, S. Lam, B. Palcic, “Laser-induced fluorescence spectroscopy at endoscopy: tissue optics, Monte Carlo modeling, and in vivo measurements,” Opt. Eng. 34, 3334–3343 (1995).
[CrossRef]

J. Qu, C. MacAulay, S. Lam, B. Palcic, “Optical properties of normal and carcinomatous bronchial tissue,” Appl. Opt. 33, 7397–7405 (1994).
[CrossRef] [PubMed]

Ramanujam, N.

K. Tumer, N. Ramanujam, J. Ghosh, R. Richards-Kortum, “Ensembles of radial basis function networks for spectroscopic detection of cervical precancer,” IEEE Trans. Biomed. Eng. 45, 953–961 (1998).
[CrossRef] [PubMed]

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, R. Richards-Kortum, “Fluorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia (CIN),” Gynecol. Oncol. 52, 31–38 (1994).
[CrossRef] [PubMed]

Ratliff, N. B.

Rava, R. P.

J. Wu, M. S. Feld, R. P. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32, 3585–3595 (1993).
[CrossRef] [PubMed]

R. M. Cothren, R. R. Richards-Kortum, M. V. Sivak, M. Fitzmaurice, R. P. Rava, G. A. Boyce, G. B. Hayes, M. Doxtader, R. Blackman, T. Ivanc, M. S. Feld, R. E. Petras, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[CrossRef] [PubMed]

Richards-Kortum, R.

K. Tumer, N. Ramanujam, J. Ghosh, R. Richards-Kortum, “Ensembles of radial basis function networks for spectroscopic detection of cervical precancer,” IEEE Trans. Biomed. Eng. 45, 953–961 (1998).
[CrossRef] [PubMed]

S. Warren, K. Pope, Y. Yazdi, A. J. Welch, S. Thomsen, A. L. Johnston, M. J. Davis, R. Richards-Kortum, “Combined ultrasound and fluorescence spectroscopy for physico-chemical imaging of atherosclerosis,” IEEE Trans. Biomed. Eng. 42, 121–132 (1995).
[CrossRef] [PubMed]

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, R. Richards-Kortum, “Fluorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia (CIN),” Gynecol. Oncol. 52, 31–38 (1994).
[CrossRef] [PubMed]

A. J. Drukin, S. Jaikumar, R. Richards-Kortum, “Optically dilute, absorbing, and turbid phantoms for fluorescence spectroscopy of homogeneous and inhomogeneous samples,” Appl. Spectrosc. 47, 2114–2121 (1993).
[CrossRef]

Richards-Kortum, R. R.

R. M. Cothren, R. R. Richards-Kortum, M. V. Sivak, M. Fitzmaurice, R. P. Rava, G. A. Boyce, G. B. Hayes, M. Doxtader, R. Blackman, T. Ivanc, M. S. Feld, R. E. Petras, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[CrossRef] [PubMed]

Roberts, P. J.

Russel, A.

R. Smith, S. Ahmad, A. Voudas, J. Spencer, A. Russel, G. R. Jones, “Chromatic modulation for optical fiber sensing electromagnetic and speckle noise analysis,” J. Mod. Opt. 39, 2301–2314 (1992).
[CrossRef]

Sarnaik, J.

A. E. Profio, D. R. Doiron, J. Sarnaik, “Fluorometer for endoscopic diagnosis of tumors,” Med. Phys. 11, 516–520 (1984).
[CrossRef] [PubMed]

Savage, H.

S. G. Demos, A. J. Papadopoulos, H. Savage, A. S. Heerdt, S. Schantz, R. R. Alfano, “Polarization filter for biomedical tissue optical imaging,” Photochem. Photobiol. 66, 821–825 (1997).
[CrossRef]

Schantz, S.

S. G. Demos, A. J. Papadopoulos, H. Savage, A. S. Heerdt, S. Schantz, R. R. Alfano, “Polarization filter for biomedical tissue optical imaging,” Photochem. Photobiol. 66, 821–825 (1997).
[CrossRef]

Schmitt, J. M.

Silva, E.

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, R. Richards-Kortum, “Fluorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia (CIN),” Gynecol. Oncol. 52, 31–38 (1994).
[CrossRef] [PubMed]

Sivak, M. V.

R. M. Cothren, R. R. Richards-Kortum, M. V. Sivak, M. Fitzmaurice, R. P. Rava, G. A. Boyce, G. B. Hayes, M. Doxtader, R. Blackman, T. Ivanc, M. S. Feld, R. E. Petras, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[CrossRef] [PubMed]

Smith, R.

R. Smith, S. Ahmad, A. Voudas, J. Spencer, A. Russel, G. R. Jones, “Chromatic modulation for optical fiber sensing electromagnetic and speckle noise analysis,” J. Mod. Opt. 39, 2301–2314 (1992).
[CrossRef]

Spencer, J.

R. Smith, S. Ahmad, A. Voudas, J. Spencer, A. Russel, G. R. Jones, “Chromatic modulation for optical fiber sensing electromagnetic and speckle noise analysis,” J. Mod. Opt. 39, 2301–2314 (1992).
[CrossRef]

Sterenborg, H. J. C. M.

Studzinski, A. P.

G. A. Wagnieres, A. P. Studzinski, H. E. van den Bergh, “An endoscopic fluorescence imaging system for simultaneous visual examination and photodetection of cancers,” Rev. Sci. Instrum. 68, 203–212 (1997).
[CrossRef]

Tat, D. B.

R. R. Alfano, D. B. Tat, J. Cordero, P. Tomashefsky, F. W. Longo, M. A. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. QE-20, 1507–1511 (1984).
[CrossRef]

Thomsen, S.

S. Warren, K. Pope, Y. Yazdi, A. J. Welch, S. Thomsen, A. L. Johnston, M. J. Davis, R. Richards-Kortum, “Combined ultrasound and fluorescence spectroscopy for physico-chemical imaging of atherosclerosis,” IEEE Trans. Biomed. Eng. 42, 121–132 (1995).
[CrossRef] [PubMed]

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, R. Richards-Kortum, “Fluorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia (CIN),” Gynecol. Oncol. 52, 31–38 (1994).
[CrossRef] [PubMed]

Tomashefsky, P.

R. R. Alfano, D. B. Tat, J. Cordero, P. Tomashefsky, F. W. Longo, M. A. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. QE-20, 1507–1511 (1984).
[CrossRef]

Tumer, K.

K. Tumer, N. Ramanujam, J. Ghosh, R. Richards-Kortum, “Ensembles of radial basis function networks for spectroscopic detection of cervical precancer,” IEEE Trans. Biomed. Eng. 45, 953–961 (1998).
[CrossRef] [PubMed]

van Assendelft, O. W.

O. W. van Assendelft, Spectrophotometry of haemoglobin derivatives (Royal Vangorcum, Assen, The Netherlands, 1970).

van Dam, J.

T. D. Wang, J. van Dam, J. M. Crawford, E. A. Preisinger, Y. Wang, M. S. Feld, “Fluorescence endoscopic imaging of human colonic adenomas,” Gastroenterology 111, 1182–1191 (1996).
[CrossRef] [PubMed]

van den Bergh, H. E.

G. A. Wagnieres, A. P. Studzinski, H. E. van den Bergh, “An endoscopic fluorescence imaging system for simultaneous visual examination and photodetection of cancers,” Rev. Sci. Instrum. 68, 203–212 (1997).
[CrossRef]

van Gemert, M. J. C.

van Kampen, E. J.

E. J. van Kampen, W. G. Zilstra, “Determination of hemoglobin and its derivatives,” in Advances in Clinical Chemistry, H. Sobotka, C. P. Stewart, eds. (Academic, New York, 1965), Vol. 8, pp 158–187.

van Wierington, N.

Voudas, A.

R. Smith, S. Ahmad, A. Voudas, J. Spencer, A. Russel, G. R. Jones, “Chromatic modulation for optical fiber sensing electromagnetic and speckle noise analysis,” J. Mod. Opt. 39, 2301–2314 (1992).
[CrossRef]

Wagnieres, G. A.

G. A. Wagnieres, A. P. Studzinski, H. E. van den Bergh, “An endoscopic fluorescence imaging system for simultaneous visual examination and photodetection of cancers,” Rev. Sci. Instrum. 68, 203–212 (1997).
[CrossRef]

Wang, L.

L. Wang, X. Zhao, “Ultrasound-modulated optical tomography of absorbing objects buried in dense tissue-simulating turbid media,” Appl. Opt. 36, 7277–7282 (1997).
[CrossRef]

L. Wang, S. L. Jacques, “Analysis of diffusion theory and similarity relations,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 107–116 (1993).
[CrossRef]

L. Wang, S. L. Jacques, “Monte Carlo modeling of light transport in multilayered tissue in standard C” (University of Texas, Houston, Tex., 1992).

Wang, T. D.

T. D. Wang, J. van Dam, J. M. Crawford, E. A. Preisinger, Y. Wang, M. S. Feld, “Fluorescence endoscopic imaging of human colonic adenomas,” Gastroenterology 111, 1182–1191 (1996).
[CrossRef] [PubMed]

Wang, Y.

T. D. Wang, J. van Dam, J. M. Crawford, E. A. Preisinger, Y. Wang, M. S. Feld, “Fluorescence endoscopic imaging of human colonic adenomas,” Gastroenterology 111, 1182–1191 (1996).
[CrossRef] [PubMed]

Warren, S.

S. Warren, K. Pope, Y. Yazdi, A. J. Welch, S. Thomsen, A. L. Johnston, M. J. Davis, R. Richards-Kortum, “Combined ultrasound and fluorescence spectroscopy for physico-chemical imaging of atherosclerosis,” IEEE Trans. Biomed. Eng. 42, 121–132 (1995).
[CrossRef] [PubMed]

Welch, A. J.

C. M. Gardner, S. L. Jacques, A. J. Welch, “Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence,” Appl. Opt. 35, 1780–1792 (1996).
[CrossRef] [PubMed]

S. Warren, K. Pope, Y. Yazdi, A. J. Welch, S. Thomsen, A. L. Johnston, M. J. Davis, R. Richards-Kortum, “Combined ultrasound and fluorescence spectroscopy for physico-chemical imaging of atherosclerosis,” IEEE Trans. Biomed. Eng. 42, 121–132 (1995).
[CrossRef] [PubMed]

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Willett, P. L.

Wilson, B. C.

Wu, J.

J. Wu, M. S. Feld, R. P. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32, 3585–3595 (1993).
[CrossRef] [PubMed]

L. T. Perelman, V. Backman, J. Wu, R. R. Dasari, M. S. Feld, “Spectroscopic diagnostics of epithelial tissues with polarized light,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 474–479 (1999).
[CrossRef]

Yazdi, Y.

S. Warren, K. Pope, Y. Yazdi, A. J. Welch, S. Thomsen, A. L. Johnston, M. J. Davis, R. Richards-Kortum, “Combined ultrasound and fluorescence spectroscopy for physico-chemical imaging of atherosclerosis,” IEEE Trans. Biomed. Eng. 42, 121–132 (1995).
[CrossRef] [PubMed]

Zhao, X.

Zilstra, W. G.

E. J. van Kampen, W. G. Zilstra, “Determination of hemoglobin and its derivatives,” in Advances in Clinical Chemistry, H. Sobotka, C. P. Stewart, eds. (Academic, New York, 1965), Vol. 8, pp 158–187.

Appl. Opt. (10)

C. Kittrell, P. L. Willett, C. de los Santos-Pacheo, N. B. Ratliff, J. R. Kramer, E. G. Malk, M. S. Feld, “Diagnosis of fibrous arterial atherosclerosis using fluorescence,” Appl. Opt. 24, 2280–2281 (1985).
[CrossRef] [PubMed]

J. M. Schmitt, A. H. Gandjbakhche, R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt. 31, 6535–6546 (1992).
[CrossRef] [PubMed]

W. Pickering, S. A. Prahl, N. van Wierington, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
[CrossRef] [PubMed]

J. Wu, M. S. Feld, R. P. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32, 3585–3595 (1993).
[CrossRef] [PubMed]

J. Qu, C. MacAulay, S. Lam, B. Palcic, “Optical properties of normal and carcinomatous bronchial tissue,” Appl. Opt. 33, 7397–7405 (1994).
[CrossRef] [PubMed]

S. G. Demos, R. R. Alfano, “Optical polarization imaging,” Appl. Opt. 36, 150–155 (1997).
[CrossRef] [PubMed]

L. Wang, X. Zhao, “Ultrasound-modulated optical tomography of absorbing objects buried in dense tissue-simulating turbid media,” Appl. Opt. 36, 7277–7282 (1997).
[CrossRef]

G. D. Lewis, D. L. Jordan, P. J. Roberts, “Backscattering target detection in a turbid medium by polarization discrimination,” Appl. Opt. 38, 3937–3944 (1999).
[CrossRef]

C. M. Gardner, S. L. Jacques, A. J. Welch, “Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence,” Appl. Opt. 35, 1780–1792 (1996).
[CrossRef] [PubMed]

B. W. Pogue, L. Lilge, M. S. Patterson, B. C. Wilson, T. Hasan, “Absorbed photodynamic dose from pulsed versus continuous wave light examined with tissue-simulating dosimeters,” Appl. Opt. 36, 7257–7269 (1997).
[CrossRef]

Appl. Spectrosc. (1)

Biophys. J. (1)

D. W. Leonard, K. M. Meek, “Refractive indices of the collagen fibrils and extrafibrillar material of the corneal stroma,” Biophys. J. 72, 1382–1387 (1997).
[CrossRef] [PubMed]

Gastroenterology (1)

T. D. Wang, J. van Dam, J. M. Crawford, E. A. Preisinger, Y. Wang, M. S. Feld, “Fluorescence endoscopic imaging of human colonic adenomas,” Gastroenterology 111, 1182–1191 (1996).
[CrossRef] [PubMed]

Gastrointest. Endosc. (1)

R. M. Cothren, R. R. Richards-Kortum, M. V. Sivak, M. Fitzmaurice, R. P. Rava, G. A. Boyce, G. B. Hayes, M. Doxtader, R. Blackman, T. Ivanc, M. S. Feld, R. E. Petras, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[CrossRef] [PubMed]

Gynecol. Oncol. (1)

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, R. Richards-Kortum, “Fluorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia (CIN),” Gynecol. Oncol. 52, 31–38 (1994).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (2)

R. R. Alfano, D. B. Tat, J. Cordero, P. Tomashefsky, F. W. Longo, M. A. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. QE-20, 1507–1511 (1984).
[CrossRef]

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

IEEE Trans. Biomed. Eng. (2)

K. Tumer, N. Ramanujam, J. Ghosh, R. Richards-Kortum, “Ensembles of radial basis function networks for spectroscopic detection of cervical precancer,” IEEE Trans. Biomed. Eng. 45, 953–961 (1998).
[CrossRef] [PubMed]

S. Warren, K. Pope, Y. Yazdi, A. J. Welch, S. Thomsen, A. L. Johnston, M. J. Davis, R. Richards-Kortum, “Combined ultrasound and fluorescence spectroscopy for physico-chemical imaging of atherosclerosis,” IEEE Trans. Biomed. Eng. 42, 121–132 (1995).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

R. Smith, S. Ahmad, A. Voudas, J. Spencer, A. Russel, G. R. Jones, “Chromatic modulation for optical fiber sensing electromagnetic and speckle noise analysis,” J. Mod. Opt. 39, 2301–2314 (1992).
[CrossRef]

Lasers Life Sci. (1)

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).

Lasers Surg. Med. (1)

J. Hung, S. Lam, J. C. LeRiche, B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg. Med. 11, 99–105 (1991).
[CrossRef] [PubMed]

Med. Phys. (1)

A. E. Profio, D. R. Doiron, J. Sarnaik, “Fluorometer for endoscopic diagnosis of tumors,” Med. Phys. 11, 516–520 (1984).
[CrossRef] [PubMed]

Opt. Eng. (1)

J. Qu, C. MacAulay, S. Lam, B. Palcic, “Laser-induced fluorescence spectroscopy at endoscopy: tissue optics, Monte Carlo modeling, and in vivo measurements,” Opt. Eng. 34, 3334–3343 (1995).
[CrossRef]

Optik (1)

S. Jutamulia, T. Asakura, “Reduction of coherent noise using various artificial incoherent sources,” Optik 70, 52–57 (1985).

Photochem. Photobiol. (1)

S. G. Demos, A. J. Papadopoulos, H. Savage, A. S. Heerdt, S. Schantz, R. R. Alfano, “Polarization filter for biomedical tissue optical imaging,” Photochem. Photobiol. 66, 821–825 (1997).
[CrossRef]

Phys. Med. Biol. (1)

M. Kohl, M. Essenpreis, M. Cope, “The influence of glucose upon the transport of light in tissue-simulating phantoms,” Phys. Med. Biol. 40, 1267–1287 (1995).
[CrossRef] [PubMed]

Proc. IEEE (1)

T. Iwai, T. Asakura, “Speckle reduction in coherent information processing,” Proc. IEEE 84, 765–781 (1996).
[CrossRef]

Rev. Sci. Instrum. (2)

P. Lenz, “Endoscopic fluorescence detector,” Rev. Sci. Instrum. 59, 930–933 (1988).
[CrossRef]

G. A. Wagnieres, A. P. Studzinski, H. E. van den Bergh, “An endoscopic fluorescence imaging system for simultaneous visual examination and photodetection of cancers,” Rev. Sci. Instrum. 68, 203–212 (1997).
[CrossRef]

Other (5)

L. T. Perelman, V. Backman, J. Wu, R. R. Dasari, M. S. Feld, “Spectroscopic diagnostics of epithelial tissues with polarized light,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 474–479 (1999).
[CrossRef]

L. Wang, S. L. Jacques, “Monte Carlo modeling of light transport in multilayered tissue in standard C” (University of Texas, Houston, Tex., 1992).

E. J. van Kampen, W. G. Zilstra, “Determination of hemoglobin and its derivatives,” in Advances in Clinical Chemistry, H. Sobotka, C. P. Stewart, eds. (Academic, New York, 1965), Vol. 8, pp 158–187.

O. W. van Assendelft, Spectrophotometry of haemoglobin derivatives (Royal Vangorcum, Assen, The Netherlands, 1970).

L. Wang, S. L. Jacques, “Analysis of diffusion theory and similarity relations,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 107–116 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Monte Carlo modeling of fluorescence and diffuse reflectance of excitation light. The optical properties of the tissue at the excitation wavelength are μ a = 16.5 cm-1, μ s = 184 cm-1, and g = 0.9 and at fluorescence wavelength are μ a = 8.0 cm-1, μ s = 145 cm-1, and g = 0.87. (a) Illumination-and-collection geometry: ϕ∈(0°, 90°) and θ∈(-90°, 90°). (b) Normalized angular distribution of fluorescence and diffuse reflectance emerging from the tissue surface. Solid circles, illumination angle ϕ = 0°; long-dashed circle, ϕ = 30°; dashed–dotted circles, ϕ = 75°, short-dashed circles, Lambertian source.

Fig. 2
Fig. 2

Angular distribution of F/R ratio at several illumination angles ϕ in the incidence plane. Solid curve, ϕ = 0°; long-dashed curve, ϕ = 30°; short-dashed curve, ϕ = 75°; dashed–dotted curve, reference.

Fig. 3
Fig. 3

F/R ratio collected by an imaging device such as an endoscope. Left, illumination-and-collection geometry; right, dependence of F/R ratio on illumination-and-collection angle.

Fig. 4
Fig. 4

Schematic diagram of the experimental setup used to collect the fluorescence and cross-polarized reflection images: F1, long-pass filter; P1, P2, polarizers with polarization axes perpendicular to each other; θ′, angle between the optical axis of the endoscope and the normal of the sample surface.

Fig. 5
Fig. 5

Setup for measurement of the optical properties of the samples.

Fig. 6
Fig. 6

Scattering coefficients and g factors of tissue-simulating phantoms used in the study. (a) Measured and calculated scattering coefficients at concentrations of polystyrene microsphere in the tissue phantom of 0.25%, 0.35%, and 0.5% w/w. (b) Calculated g factors of 0.55-µm-diameter polystyrene microspheres in the gel.

Fig. 7
Fig. 7

Fluorescence spectrum of a tissue phantom excited by a laser of 457-nm wavelength.

Fig. 8
Fig. 8

Simplified geometry of the experimental imaging system. Left, Imaging of a flat surface phantom at θ′ ≠ 0; right, imaging of a phantom with an irregular surface at θ′ = 0°. ϕ is the excitation-and-collection angle.

Fig. 9
Fig. 9

Images collected from a tissue-simulating phantom with a blood content of 2.5% (v/v) and a microsphere concentration of 0.5% (w/w) at θ′ = 30°. (a) Raw fluorescence image and histogram of its gray level, (b) F/R ratio image and its histogram.

Fig. 10
Fig. 10

Raw fluorescence image and ratio image recorded from the homogeneous phantom of an irregular surface. (a) Raw fluorescence and the profile across AA′, (b) ratio image of fluorescence versus cross-polarized reflection and profile across AA′. The standard deviations of the gray levels of the raw fluorescence and ratio images are 32 and 5, respectively.

Fig. 11
Fig. 11

Structures of inhomogeneous tissue-simulating phantoms: (a) fluorescence yield contrast phantom, (b) absorption and scattering contrast phantoms.

Fig. 12
Fig. 12

Results of imaging of inhomogeneous phantoms. (a) and (b) Raw fluorescence and ratio images taken from a fluorescence yield contrast phantom. (c) and (d) Raw fluorescence and ratio images of the absorption contrast phantom. (e) and (f) Raw fluorescence and ratio images of the scattering contrast phantom.

Fig. 13
Fig. 13

Left, reflection image recorded without the cross polarizer; right, F/R ratio image without the cross polarizer.

Fig. 14
Fig. 14

Relative change of F/R ratio as a function of excitation and collection angle θ. The vertical axis is the difference between the ratio at angle θ and at 0° divided by the ratio at 0°.

Tables (1)

Tables Icon

Table 1 Composition of Homogeneous Phantoms with Flat Surfaces

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ΨFr, λem=0 ΦFr, z, λex, λemΓescaper, z, λemdz,
ΦFr, z, λex, λem=ΦExr, z, λex×βr, z, λem,
Φexr, z, λex=ΦExr, z, λexIprofiler, λex,

Metrics