Abstract

An improved x-ray microscope with a fully electronic CCD detector system has been constructed that allows improved laboratory-based microstructural investigations of materials with hard x rays. It uses the Kirkpatrick–Baez multilayer mirror design to form an image that has a demonstrated resolution of 4 µm at 8 keV (Cu Kα radiation). This microscope performs well with standard sealed-tube laboratory x-ray sources, producing digital images with 20-s exposure times for a 5-µm Au grid (a thickness of two absorption lengths).

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. H. Levine, A. R. Kalukin, S. P. Frigo, I. McNulty, M. Kuhn, “Tomographic reconstruction of an integrated circuit interconnect,” Appl. Phys. Lett. 74, 150–152 (1999).
    [CrossRef]
  2. P. Spanne, J. H. Thovert, C. J. Jacquin, W. B. Lindquist, K. W. Jones, P. M. Adler, “Synchrotron computed microtomography of porous media—topology and transports,” Phys. Rev. Lett. 73, 2001–2004 (1994).
    [CrossRef] [PubMed]
  3. T. E. Gureyev, C. Raven, A. Snigirev, I. Snigireva, S. W. Wilkins, “Hard x-ray quantitative non-interferometric phase-contrast microscopy,” J. Phys. D 32, 563–567 (1999).
    [CrossRef]
  4. A. Bakulin, S. M. Durbin, C. Liu, J. Erdmann, A. T. Macrander, T. Jach, “Use of Kirkpatrick-Baez multilayer optics for x-ray fluorescence imaging,” in Crystal and Multilayer Optics, A. T. Macrander, A. K. Freund, T. Ishikawa, D. M. Mills, eds., Proc. SPIE3448, 218–223 (1998).
    [CrossRef]
  5. P. Kirkpatrick, A. Baez, “Formation of optical images by x-rays,” J. Opt. Soc. Am. 38, 766–774 (1948).
    [CrossRef] [PubMed]
  6. J. F. McGee, “A long wavelength x-ray microscope,” in X-Ray Microscopy and Microradiography, V. E. Coslett, A. Engstrom, H. H. Pattee, eds. (Academic, New York, 1957), pp. 164–176.
  7. J. H. Underwood, T. W. Barbee, C. Frieber, “X-ray microscope with multilayer mirrors,” Appl. Opt. 25, 1730–1732 (1986).
    [CrossRef] [PubMed]
  8. J. H. Underwood, “High-energy x-ray microscopy with multilayer reflectors,” Rev. Sci. Instrum. 57, 2119–2123 (1986).
    [CrossRef]
  9. J. H. Underwood, A. C. Thompson, Y. Wu, R. D. Giauque, “X-ray microprobe using multilayer mirrors,” Nucl. Instrum. Methods Phys. Res. A 266, 296–302 (1988).
    [CrossRef]
  10. A. C. Thompson, J. H. Underwood, Y. Wu, R. D. Giauque, K. W. Jones, M. L. Rivers, “Elemental measurements with an x-ray microprobe of biological and geological samples with femtogram sensitivity,” Nucl. Instrum. Methods A 266, 318–323 (1988).
    [CrossRef]
  11. Y. Wu, A. C. Thompson, J. H. Underwood, R. D. Giauque, K. Chapman, M. L. Rivers, K. W. Jones, “A tunable x-ray microprobe using synchrotron radiation,” Nucl. Instrum. Methods A 291, 146–151 (1990).
    [CrossRef]
  12. Y. Suzuki, F. Uchida, “Hard x-ray microprobe with total reflection mirrors,” Rev. Sci. Instrum. A 345, 578–580 (1992).
    [CrossRef]
  13. C. Kunz, “X-ray microscopy,” Phys. Scr. T61, 19–25 (1996).
    [CrossRef]
  14. J. Cazaux, D. Erre, D. Mouze, J. M. Patat, S. Rondot, A. Sasov, P. Trebbia, A. Zolfaghari, “Recent developments in x-ray projection microscopy and x-ray microtomography applied to materials science,” J. Phys. (Paris) IV 3, 2099–2104 (1993).
  15. H. Elhila, A. Zolfaghari, J. Cazaux, J. C. Audran, D. Mouze, “X-ray microscopy and microtomography: application in biology,” J. Phys. (Paris) IV 6, 739–745 (1996).
  16. D. Erre, H. Jibaoui, J. Cazaux, “X-ray microscopy by total reflectivity and grazing incidence Kossel diffraction,” J. Phys. (Paris) IV 6, 393–398 (1996).
  17. D. Erre, E. Bourelle, B. Claude-Montigny, A. Metrot, J. Cazaux, “Following the intercalation process of H2SO4 into pyrographite by x-ray microscopy,” Phys. Rev. Sect. B 56, 4944–4948 (1997).
    [CrossRef]
  18. C. Welnak, G. Chen, F. Cerrina, “Shadow: a synchrotron radiation and x-ray optics simulation tool,” Nucl. Instrum. Methods Phys. Res. A 347, 344–347 (1994).
    [CrossRef]
  19. R. N. Watts, D. L. Ederer, R. D. Deslattes, T. B. Lucatorto, W. T. Estler, C. J. Evans, T. V. Vorburger, “Upgraded facility for multilayer mirror characterization at NIST,” in Multilayer Optics for Advanced X-Ray Applications, N. M. Ceglio, ed., Proc. SPIE1547, 159–166 (1991).
    [CrossRef]
  20. V. G. Kohn, “On the theory of reflectivity by an x-ray multilayer mirror,” Phys. Status Solidi B 187, 61–70 (1995).
    [CrossRef]
  21. T. Wroblewski, O. Glaub, H.-A. Crostack, A. Ertel, F. Fandrich, Ch. Genzel, K. Hradil, W. Ternes, E. Woldt, “A new diffractometer for materials science and imaging at HASYLAB beamline G3,” Nucl. Instrum. Methods A 428, 570–582 (1999).
    [CrossRef]

1999 (3)

Z. H. Levine, A. R. Kalukin, S. P. Frigo, I. McNulty, M. Kuhn, “Tomographic reconstruction of an integrated circuit interconnect,” Appl. Phys. Lett. 74, 150–152 (1999).
[CrossRef]

T. E. Gureyev, C. Raven, A. Snigirev, I. Snigireva, S. W. Wilkins, “Hard x-ray quantitative non-interferometric phase-contrast microscopy,” J. Phys. D 32, 563–567 (1999).
[CrossRef]

T. Wroblewski, O. Glaub, H.-A. Crostack, A. Ertel, F. Fandrich, Ch. Genzel, K. Hradil, W. Ternes, E. Woldt, “A new diffractometer for materials science and imaging at HASYLAB beamline G3,” Nucl. Instrum. Methods A 428, 570–582 (1999).
[CrossRef]

1997 (1)

D. Erre, E. Bourelle, B. Claude-Montigny, A. Metrot, J. Cazaux, “Following the intercalation process of H2SO4 into pyrographite by x-ray microscopy,” Phys. Rev. Sect. B 56, 4944–4948 (1997).
[CrossRef]

1996 (3)

H. Elhila, A. Zolfaghari, J. Cazaux, J. C. Audran, D. Mouze, “X-ray microscopy and microtomography: application in biology,” J. Phys. (Paris) IV 6, 739–745 (1996).

D. Erre, H. Jibaoui, J. Cazaux, “X-ray microscopy by total reflectivity and grazing incidence Kossel diffraction,” J. Phys. (Paris) IV 6, 393–398 (1996).

C. Kunz, “X-ray microscopy,” Phys. Scr. T61, 19–25 (1996).
[CrossRef]

1995 (1)

V. G. Kohn, “On the theory of reflectivity by an x-ray multilayer mirror,” Phys. Status Solidi B 187, 61–70 (1995).
[CrossRef]

1994 (2)

C. Welnak, G. Chen, F. Cerrina, “Shadow: a synchrotron radiation and x-ray optics simulation tool,” Nucl. Instrum. Methods Phys. Res. A 347, 344–347 (1994).
[CrossRef]

P. Spanne, J. H. Thovert, C. J. Jacquin, W. B. Lindquist, K. W. Jones, P. M. Adler, “Synchrotron computed microtomography of porous media—topology and transports,” Phys. Rev. Lett. 73, 2001–2004 (1994).
[CrossRef] [PubMed]

1993 (1)

J. Cazaux, D. Erre, D. Mouze, J. M. Patat, S. Rondot, A. Sasov, P. Trebbia, A. Zolfaghari, “Recent developments in x-ray projection microscopy and x-ray microtomography applied to materials science,” J. Phys. (Paris) IV 3, 2099–2104 (1993).

1992 (1)

Y. Suzuki, F. Uchida, “Hard x-ray microprobe with total reflection mirrors,” Rev. Sci. Instrum. A 345, 578–580 (1992).
[CrossRef]

1990 (1)

Y. Wu, A. C. Thompson, J. H. Underwood, R. D. Giauque, K. Chapman, M. L. Rivers, K. W. Jones, “A tunable x-ray microprobe using synchrotron radiation,” Nucl. Instrum. Methods A 291, 146–151 (1990).
[CrossRef]

1988 (2)

J. H. Underwood, A. C. Thompson, Y. Wu, R. D. Giauque, “X-ray microprobe using multilayer mirrors,” Nucl. Instrum. Methods Phys. Res. A 266, 296–302 (1988).
[CrossRef]

A. C. Thompson, J. H. Underwood, Y. Wu, R. D. Giauque, K. W. Jones, M. L. Rivers, “Elemental measurements with an x-ray microprobe of biological and geological samples with femtogram sensitivity,” Nucl. Instrum. Methods A 266, 318–323 (1988).
[CrossRef]

1986 (2)

J. H. Underwood, T. W. Barbee, C. Frieber, “X-ray microscope with multilayer mirrors,” Appl. Opt. 25, 1730–1732 (1986).
[CrossRef] [PubMed]

J. H. Underwood, “High-energy x-ray microscopy with multilayer reflectors,” Rev. Sci. Instrum. 57, 2119–2123 (1986).
[CrossRef]

1948 (1)

Adler, P. M.

P. Spanne, J. H. Thovert, C. J. Jacquin, W. B. Lindquist, K. W. Jones, P. M. Adler, “Synchrotron computed microtomography of porous media—topology and transports,” Phys. Rev. Lett. 73, 2001–2004 (1994).
[CrossRef] [PubMed]

Audran, J. C.

H. Elhila, A. Zolfaghari, J. Cazaux, J. C. Audran, D. Mouze, “X-ray microscopy and microtomography: application in biology,” J. Phys. (Paris) IV 6, 739–745 (1996).

Baez, A.

Bakulin, A.

A. Bakulin, S. M. Durbin, C. Liu, J. Erdmann, A. T. Macrander, T. Jach, “Use of Kirkpatrick-Baez multilayer optics for x-ray fluorescence imaging,” in Crystal and Multilayer Optics, A. T. Macrander, A. K. Freund, T. Ishikawa, D. M. Mills, eds., Proc. SPIE3448, 218–223 (1998).
[CrossRef]

Barbee, T. W.

Bourelle, E.

D. Erre, E. Bourelle, B. Claude-Montigny, A. Metrot, J. Cazaux, “Following the intercalation process of H2SO4 into pyrographite by x-ray microscopy,” Phys. Rev. Sect. B 56, 4944–4948 (1997).
[CrossRef]

Cazaux, J.

D. Erre, E. Bourelle, B. Claude-Montigny, A. Metrot, J. Cazaux, “Following the intercalation process of H2SO4 into pyrographite by x-ray microscopy,” Phys. Rev. Sect. B 56, 4944–4948 (1997).
[CrossRef]

H. Elhila, A. Zolfaghari, J. Cazaux, J. C. Audran, D. Mouze, “X-ray microscopy and microtomography: application in biology,” J. Phys. (Paris) IV 6, 739–745 (1996).

D. Erre, H. Jibaoui, J. Cazaux, “X-ray microscopy by total reflectivity and grazing incidence Kossel diffraction,” J. Phys. (Paris) IV 6, 393–398 (1996).

J. Cazaux, D. Erre, D. Mouze, J. M. Patat, S. Rondot, A. Sasov, P. Trebbia, A. Zolfaghari, “Recent developments in x-ray projection microscopy and x-ray microtomography applied to materials science,” J. Phys. (Paris) IV 3, 2099–2104 (1993).

Cerrina, F.

C. Welnak, G. Chen, F. Cerrina, “Shadow: a synchrotron radiation and x-ray optics simulation tool,” Nucl. Instrum. Methods Phys. Res. A 347, 344–347 (1994).
[CrossRef]

Chapman, K.

Y. Wu, A. C. Thompson, J. H. Underwood, R. D. Giauque, K. Chapman, M. L. Rivers, K. W. Jones, “A tunable x-ray microprobe using synchrotron radiation,” Nucl. Instrum. Methods A 291, 146–151 (1990).
[CrossRef]

Chen, G.

C. Welnak, G. Chen, F. Cerrina, “Shadow: a synchrotron radiation and x-ray optics simulation tool,” Nucl. Instrum. Methods Phys. Res. A 347, 344–347 (1994).
[CrossRef]

Claude-Montigny, B.

D. Erre, E. Bourelle, B. Claude-Montigny, A. Metrot, J. Cazaux, “Following the intercalation process of H2SO4 into pyrographite by x-ray microscopy,” Phys. Rev. Sect. B 56, 4944–4948 (1997).
[CrossRef]

Crostack, H.-A.

T. Wroblewski, O. Glaub, H.-A. Crostack, A. Ertel, F. Fandrich, Ch. Genzel, K. Hradil, W. Ternes, E. Woldt, “A new diffractometer for materials science and imaging at HASYLAB beamline G3,” Nucl. Instrum. Methods A 428, 570–582 (1999).
[CrossRef]

Deslattes, R. D.

R. N. Watts, D. L. Ederer, R. D. Deslattes, T. B. Lucatorto, W. T. Estler, C. J. Evans, T. V. Vorburger, “Upgraded facility for multilayer mirror characterization at NIST,” in Multilayer Optics for Advanced X-Ray Applications, N. M. Ceglio, ed., Proc. SPIE1547, 159–166 (1991).
[CrossRef]

Durbin, S. M.

A. Bakulin, S. M. Durbin, C. Liu, J. Erdmann, A. T. Macrander, T. Jach, “Use of Kirkpatrick-Baez multilayer optics for x-ray fluorescence imaging,” in Crystal and Multilayer Optics, A. T. Macrander, A. K. Freund, T. Ishikawa, D. M. Mills, eds., Proc. SPIE3448, 218–223 (1998).
[CrossRef]

Ederer, D. L.

R. N. Watts, D. L. Ederer, R. D. Deslattes, T. B. Lucatorto, W. T. Estler, C. J. Evans, T. V. Vorburger, “Upgraded facility for multilayer mirror characterization at NIST,” in Multilayer Optics for Advanced X-Ray Applications, N. M. Ceglio, ed., Proc. SPIE1547, 159–166 (1991).
[CrossRef]

Elhila, H.

H. Elhila, A. Zolfaghari, J. Cazaux, J. C. Audran, D. Mouze, “X-ray microscopy and microtomography: application in biology,” J. Phys. (Paris) IV 6, 739–745 (1996).

Erdmann, J.

A. Bakulin, S. M. Durbin, C. Liu, J. Erdmann, A. T. Macrander, T. Jach, “Use of Kirkpatrick-Baez multilayer optics for x-ray fluorescence imaging,” in Crystal and Multilayer Optics, A. T. Macrander, A. K. Freund, T. Ishikawa, D. M. Mills, eds., Proc. SPIE3448, 218–223 (1998).
[CrossRef]

Erre, D.

D. Erre, E. Bourelle, B. Claude-Montigny, A. Metrot, J. Cazaux, “Following the intercalation process of H2SO4 into pyrographite by x-ray microscopy,” Phys. Rev. Sect. B 56, 4944–4948 (1997).
[CrossRef]

D. Erre, H. Jibaoui, J. Cazaux, “X-ray microscopy by total reflectivity and grazing incidence Kossel diffraction,” J. Phys. (Paris) IV 6, 393–398 (1996).

J. Cazaux, D. Erre, D. Mouze, J. M. Patat, S. Rondot, A. Sasov, P. Trebbia, A. Zolfaghari, “Recent developments in x-ray projection microscopy and x-ray microtomography applied to materials science,” J. Phys. (Paris) IV 3, 2099–2104 (1993).

Ertel, A.

T. Wroblewski, O. Glaub, H.-A. Crostack, A. Ertel, F. Fandrich, Ch. Genzel, K. Hradil, W. Ternes, E. Woldt, “A new diffractometer for materials science and imaging at HASYLAB beamline G3,” Nucl. Instrum. Methods A 428, 570–582 (1999).
[CrossRef]

Estler, W. T.

R. N. Watts, D. L. Ederer, R. D. Deslattes, T. B. Lucatorto, W. T. Estler, C. J. Evans, T. V. Vorburger, “Upgraded facility for multilayer mirror characterization at NIST,” in Multilayer Optics for Advanced X-Ray Applications, N. M. Ceglio, ed., Proc. SPIE1547, 159–166 (1991).
[CrossRef]

Evans, C. J.

R. N. Watts, D. L. Ederer, R. D. Deslattes, T. B. Lucatorto, W. T. Estler, C. J. Evans, T. V. Vorburger, “Upgraded facility for multilayer mirror characterization at NIST,” in Multilayer Optics for Advanced X-Ray Applications, N. M. Ceglio, ed., Proc. SPIE1547, 159–166 (1991).
[CrossRef]

Fandrich, F.

T. Wroblewski, O. Glaub, H.-A. Crostack, A. Ertel, F. Fandrich, Ch. Genzel, K. Hradil, W. Ternes, E. Woldt, “A new diffractometer for materials science and imaging at HASYLAB beamline G3,” Nucl. Instrum. Methods A 428, 570–582 (1999).
[CrossRef]

Frieber, C.

Frigo, S. P.

Z. H. Levine, A. R. Kalukin, S. P. Frigo, I. McNulty, M. Kuhn, “Tomographic reconstruction of an integrated circuit interconnect,” Appl. Phys. Lett. 74, 150–152 (1999).
[CrossRef]

Genzel, Ch.

T. Wroblewski, O. Glaub, H.-A. Crostack, A. Ertel, F. Fandrich, Ch. Genzel, K. Hradil, W. Ternes, E. Woldt, “A new diffractometer for materials science and imaging at HASYLAB beamline G3,” Nucl. Instrum. Methods A 428, 570–582 (1999).
[CrossRef]

Giauque, R. D.

Y. Wu, A. C. Thompson, J. H. Underwood, R. D. Giauque, K. Chapman, M. L. Rivers, K. W. Jones, “A tunable x-ray microprobe using synchrotron radiation,” Nucl. Instrum. Methods A 291, 146–151 (1990).
[CrossRef]

J. H. Underwood, A. C. Thompson, Y. Wu, R. D. Giauque, “X-ray microprobe using multilayer mirrors,” Nucl. Instrum. Methods Phys. Res. A 266, 296–302 (1988).
[CrossRef]

A. C. Thompson, J. H. Underwood, Y. Wu, R. D. Giauque, K. W. Jones, M. L. Rivers, “Elemental measurements with an x-ray microprobe of biological and geological samples with femtogram sensitivity,” Nucl. Instrum. Methods A 266, 318–323 (1988).
[CrossRef]

Glaub, O.

T. Wroblewski, O. Glaub, H.-A. Crostack, A. Ertel, F. Fandrich, Ch. Genzel, K. Hradil, W. Ternes, E. Woldt, “A new diffractometer for materials science and imaging at HASYLAB beamline G3,” Nucl. Instrum. Methods A 428, 570–582 (1999).
[CrossRef]

Gureyev, T. E.

T. E. Gureyev, C. Raven, A. Snigirev, I. Snigireva, S. W. Wilkins, “Hard x-ray quantitative non-interferometric phase-contrast microscopy,” J. Phys. D 32, 563–567 (1999).
[CrossRef]

Hradil, K.

T. Wroblewski, O. Glaub, H.-A. Crostack, A. Ertel, F. Fandrich, Ch. Genzel, K. Hradil, W. Ternes, E. Woldt, “A new diffractometer for materials science and imaging at HASYLAB beamline G3,” Nucl. Instrum. Methods A 428, 570–582 (1999).
[CrossRef]

Jach, T.

A. Bakulin, S. M. Durbin, C. Liu, J. Erdmann, A. T. Macrander, T. Jach, “Use of Kirkpatrick-Baez multilayer optics for x-ray fluorescence imaging,” in Crystal and Multilayer Optics, A. T. Macrander, A. K. Freund, T. Ishikawa, D. M. Mills, eds., Proc. SPIE3448, 218–223 (1998).
[CrossRef]

Jacquin, C. J.

P. Spanne, J. H. Thovert, C. J. Jacquin, W. B. Lindquist, K. W. Jones, P. M. Adler, “Synchrotron computed microtomography of porous media—topology and transports,” Phys. Rev. Lett. 73, 2001–2004 (1994).
[CrossRef] [PubMed]

Jibaoui, H.

D. Erre, H. Jibaoui, J. Cazaux, “X-ray microscopy by total reflectivity and grazing incidence Kossel diffraction,” J. Phys. (Paris) IV 6, 393–398 (1996).

Jones, K. W.

P. Spanne, J. H. Thovert, C. J. Jacquin, W. B. Lindquist, K. W. Jones, P. M. Adler, “Synchrotron computed microtomography of porous media—topology and transports,” Phys. Rev. Lett. 73, 2001–2004 (1994).
[CrossRef] [PubMed]

Y. Wu, A. C. Thompson, J. H. Underwood, R. D. Giauque, K. Chapman, M. L. Rivers, K. W. Jones, “A tunable x-ray microprobe using synchrotron radiation,” Nucl. Instrum. Methods A 291, 146–151 (1990).
[CrossRef]

A. C. Thompson, J. H. Underwood, Y. Wu, R. D. Giauque, K. W. Jones, M. L. Rivers, “Elemental measurements with an x-ray microprobe of biological and geological samples with femtogram sensitivity,” Nucl. Instrum. Methods A 266, 318–323 (1988).
[CrossRef]

Kalukin, A. R.

Z. H. Levine, A. R. Kalukin, S. P. Frigo, I. McNulty, M. Kuhn, “Tomographic reconstruction of an integrated circuit interconnect,” Appl. Phys. Lett. 74, 150–152 (1999).
[CrossRef]

Kirkpatrick, P.

Kohn, V. G.

V. G. Kohn, “On the theory of reflectivity by an x-ray multilayer mirror,” Phys. Status Solidi B 187, 61–70 (1995).
[CrossRef]

Kuhn, M.

Z. H. Levine, A. R. Kalukin, S. P. Frigo, I. McNulty, M. Kuhn, “Tomographic reconstruction of an integrated circuit interconnect,” Appl. Phys. Lett. 74, 150–152 (1999).
[CrossRef]

Kunz, C.

C. Kunz, “X-ray microscopy,” Phys. Scr. T61, 19–25 (1996).
[CrossRef]

Levine, Z. H.

Z. H. Levine, A. R. Kalukin, S. P. Frigo, I. McNulty, M. Kuhn, “Tomographic reconstruction of an integrated circuit interconnect,” Appl. Phys. Lett. 74, 150–152 (1999).
[CrossRef]

Lindquist, W. B.

P. Spanne, J. H. Thovert, C. J. Jacquin, W. B. Lindquist, K. W. Jones, P. M. Adler, “Synchrotron computed microtomography of porous media—topology and transports,” Phys. Rev. Lett. 73, 2001–2004 (1994).
[CrossRef] [PubMed]

Liu, C.

A. Bakulin, S. M. Durbin, C. Liu, J. Erdmann, A. T. Macrander, T. Jach, “Use of Kirkpatrick-Baez multilayer optics for x-ray fluorescence imaging,” in Crystal and Multilayer Optics, A. T. Macrander, A. K. Freund, T. Ishikawa, D. M. Mills, eds., Proc. SPIE3448, 218–223 (1998).
[CrossRef]

Lucatorto, T. B.

R. N. Watts, D. L. Ederer, R. D. Deslattes, T. B. Lucatorto, W. T. Estler, C. J. Evans, T. V. Vorburger, “Upgraded facility for multilayer mirror characterization at NIST,” in Multilayer Optics for Advanced X-Ray Applications, N. M. Ceglio, ed., Proc. SPIE1547, 159–166 (1991).
[CrossRef]

Macrander, A. T.

A. Bakulin, S. M. Durbin, C. Liu, J. Erdmann, A. T. Macrander, T. Jach, “Use of Kirkpatrick-Baez multilayer optics for x-ray fluorescence imaging,” in Crystal and Multilayer Optics, A. T. Macrander, A. K. Freund, T. Ishikawa, D. M. Mills, eds., Proc. SPIE3448, 218–223 (1998).
[CrossRef]

McGee, J. F.

J. F. McGee, “A long wavelength x-ray microscope,” in X-Ray Microscopy and Microradiography, V. E. Coslett, A. Engstrom, H. H. Pattee, eds. (Academic, New York, 1957), pp. 164–176.

McNulty, I.

Z. H. Levine, A. R. Kalukin, S. P. Frigo, I. McNulty, M. Kuhn, “Tomographic reconstruction of an integrated circuit interconnect,” Appl. Phys. Lett. 74, 150–152 (1999).
[CrossRef]

Metrot, A.

D. Erre, E. Bourelle, B. Claude-Montigny, A. Metrot, J. Cazaux, “Following the intercalation process of H2SO4 into pyrographite by x-ray microscopy,” Phys. Rev. Sect. B 56, 4944–4948 (1997).
[CrossRef]

Mouze, D.

H. Elhila, A. Zolfaghari, J. Cazaux, J. C. Audran, D. Mouze, “X-ray microscopy and microtomography: application in biology,” J. Phys. (Paris) IV 6, 739–745 (1996).

J. Cazaux, D. Erre, D. Mouze, J. M. Patat, S. Rondot, A. Sasov, P. Trebbia, A. Zolfaghari, “Recent developments in x-ray projection microscopy and x-ray microtomography applied to materials science,” J. Phys. (Paris) IV 3, 2099–2104 (1993).

Patat, J. M.

J. Cazaux, D. Erre, D. Mouze, J. M. Patat, S. Rondot, A. Sasov, P. Trebbia, A. Zolfaghari, “Recent developments in x-ray projection microscopy and x-ray microtomography applied to materials science,” J. Phys. (Paris) IV 3, 2099–2104 (1993).

Raven, C.

T. E. Gureyev, C. Raven, A. Snigirev, I. Snigireva, S. W. Wilkins, “Hard x-ray quantitative non-interferometric phase-contrast microscopy,” J. Phys. D 32, 563–567 (1999).
[CrossRef]

Rivers, M. L.

Y. Wu, A. C. Thompson, J. H. Underwood, R. D. Giauque, K. Chapman, M. L. Rivers, K. W. Jones, “A tunable x-ray microprobe using synchrotron radiation,” Nucl. Instrum. Methods A 291, 146–151 (1990).
[CrossRef]

A. C. Thompson, J. H. Underwood, Y. Wu, R. D. Giauque, K. W. Jones, M. L. Rivers, “Elemental measurements with an x-ray microprobe of biological and geological samples with femtogram sensitivity,” Nucl. Instrum. Methods A 266, 318–323 (1988).
[CrossRef]

Rondot, S.

J. Cazaux, D. Erre, D. Mouze, J. M. Patat, S. Rondot, A. Sasov, P. Trebbia, A. Zolfaghari, “Recent developments in x-ray projection microscopy and x-ray microtomography applied to materials science,” J. Phys. (Paris) IV 3, 2099–2104 (1993).

Sasov, A.

J. Cazaux, D. Erre, D. Mouze, J. M. Patat, S. Rondot, A. Sasov, P. Trebbia, A. Zolfaghari, “Recent developments in x-ray projection microscopy and x-ray microtomography applied to materials science,” J. Phys. (Paris) IV 3, 2099–2104 (1993).

Snigirev, A.

T. E. Gureyev, C. Raven, A. Snigirev, I. Snigireva, S. W. Wilkins, “Hard x-ray quantitative non-interferometric phase-contrast microscopy,” J. Phys. D 32, 563–567 (1999).
[CrossRef]

Snigireva, I.

T. E. Gureyev, C. Raven, A. Snigirev, I. Snigireva, S. W. Wilkins, “Hard x-ray quantitative non-interferometric phase-contrast microscopy,” J. Phys. D 32, 563–567 (1999).
[CrossRef]

Spanne, P.

P. Spanne, J. H. Thovert, C. J. Jacquin, W. B. Lindquist, K. W. Jones, P. M. Adler, “Synchrotron computed microtomography of porous media—topology and transports,” Phys. Rev. Lett. 73, 2001–2004 (1994).
[CrossRef] [PubMed]

Suzuki, Y.

Y. Suzuki, F. Uchida, “Hard x-ray microprobe with total reflection mirrors,” Rev. Sci. Instrum. A 345, 578–580 (1992).
[CrossRef]

Ternes, W.

T. Wroblewski, O. Glaub, H.-A. Crostack, A. Ertel, F. Fandrich, Ch. Genzel, K. Hradil, W. Ternes, E. Woldt, “A new diffractometer for materials science and imaging at HASYLAB beamline G3,” Nucl. Instrum. Methods A 428, 570–582 (1999).
[CrossRef]

Thompson, A. C.

Y. Wu, A. C. Thompson, J. H. Underwood, R. D. Giauque, K. Chapman, M. L. Rivers, K. W. Jones, “A tunable x-ray microprobe using synchrotron radiation,” Nucl. Instrum. Methods A 291, 146–151 (1990).
[CrossRef]

J. H. Underwood, A. C. Thompson, Y. Wu, R. D. Giauque, “X-ray microprobe using multilayer mirrors,” Nucl. Instrum. Methods Phys. Res. A 266, 296–302 (1988).
[CrossRef]

A. C. Thompson, J. H. Underwood, Y. Wu, R. D. Giauque, K. W. Jones, M. L. Rivers, “Elemental measurements with an x-ray microprobe of biological and geological samples with femtogram sensitivity,” Nucl. Instrum. Methods A 266, 318–323 (1988).
[CrossRef]

Thovert, J. H.

P. Spanne, J. H. Thovert, C. J. Jacquin, W. B. Lindquist, K. W. Jones, P. M. Adler, “Synchrotron computed microtomography of porous media—topology and transports,” Phys. Rev. Lett. 73, 2001–2004 (1994).
[CrossRef] [PubMed]

Trebbia, P.

J. Cazaux, D. Erre, D. Mouze, J. M. Patat, S. Rondot, A. Sasov, P. Trebbia, A. Zolfaghari, “Recent developments in x-ray projection microscopy and x-ray microtomography applied to materials science,” J. Phys. (Paris) IV 3, 2099–2104 (1993).

Uchida, F.

Y. Suzuki, F. Uchida, “Hard x-ray microprobe with total reflection mirrors,” Rev. Sci. Instrum. A 345, 578–580 (1992).
[CrossRef]

Underwood, J. H.

Y. Wu, A. C. Thompson, J. H. Underwood, R. D. Giauque, K. Chapman, M. L. Rivers, K. W. Jones, “A tunable x-ray microprobe using synchrotron radiation,” Nucl. Instrum. Methods A 291, 146–151 (1990).
[CrossRef]

A. C. Thompson, J. H. Underwood, Y. Wu, R. D. Giauque, K. W. Jones, M. L. Rivers, “Elemental measurements with an x-ray microprobe of biological and geological samples with femtogram sensitivity,” Nucl. Instrum. Methods A 266, 318–323 (1988).
[CrossRef]

J. H. Underwood, A. C. Thompson, Y. Wu, R. D. Giauque, “X-ray microprobe using multilayer mirrors,” Nucl. Instrum. Methods Phys. Res. A 266, 296–302 (1988).
[CrossRef]

J. H. Underwood, “High-energy x-ray microscopy with multilayer reflectors,” Rev. Sci. Instrum. 57, 2119–2123 (1986).
[CrossRef]

J. H. Underwood, T. W. Barbee, C. Frieber, “X-ray microscope with multilayer mirrors,” Appl. Opt. 25, 1730–1732 (1986).
[CrossRef] [PubMed]

Vorburger, T. V.

R. N. Watts, D. L. Ederer, R. D. Deslattes, T. B. Lucatorto, W. T. Estler, C. J. Evans, T. V. Vorburger, “Upgraded facility for multilayer mirror characterization at NIST,” in Multilayer Optics for Advanced X-Ray Applications, N. M. Ceglio, ed., Proc. SPIE1547, 159–166 (1991).
[CrossRef]

Watts, R. N.

R. N. Watts, D. L. Ederer, R. D. Deslattes, T. B. Lucatorto, W. T. Estler, C. J. Evans, T. V. Vorburger, “Upgraded facility for multilayer mirror characterization at NIST,” in Multilayer Optics for Advanced X-Ray Applications, N. M. Ceglio, ed., Proc. SPIE1547, 159–166 (1991).
[CrossRef]

Welnak, C.

C. Welnak, G. Chen, F. Cerrina, “Shadow: a synchrotron radiation and x-ray optics simulation tool,” Nucl. Instrum. Methods Phys. Res. A 347, 344–347 (1994).
[CrossRef]

Wilkins, S. W.

T. E. Gureyev, C. Raven, A. Snigirev, I. Snigireva, S. W. Wilkins, “Hard x-ray quantitative non-interferometric phase-contrast microscopy,” J. Phys. D 32, 563–567 (1999).
[CrossRef]

Woldt, E.

T. Wroblewski, O. Glaub, H.-A. Crostack, A. Ertel, F. Fandrich, Ch. Genzel, K. Hradil, W. Ternes, E. Woldt, “A new diffractometer for materials science and imaging at HASYLAB beamline G3,” Nucl. Instrum. Methods A 428, 570–582 (1999).
[CrossRef]

Wroblewski, T.

T. Wroblewski, O. Glaub, H.-A. Crostack, A. Ertel, F. Fandrich, Ch. Genzel, K. Hradil, W. Ternes, E. Woldt, “A new diffractometer for materials science and imaging at HASYLAB beamline G3,” Nucl. Instrum. Methods A 428, 570–582 (1999).
[CrossRef]

Wu, Y.

Y. Wu, A. C. Thompson, J. H. Underwood, R. D. Giauque, K. Chapman, M. L. Rivers, K. W. Jones, “A tunable x-ray microprobe using synchrotron radiation,” Nucl. Instrum. Methods A 291, 146–151 (1990).
[CrossRef]

A. C. Thompson, J. H. Underwood, Y. Wu, R. D. Giauque, K. W. Jones, M. L. Rivers, “Elemental measurements with an x-ray microprobe of biological and geological samples with femtogram sensitivity,” Nucl. Instrum. Methods A 266, 318–323 (1988).
[CrossRef]

J. H. Underwood, A. C. Thompson, Y. Wu, R. D. Giauque, “X-ray microprobe using multilayer mirrors,” Nucl. Instrum. Methods Phys. Res. A 266, 296–302 (1988).
[CrossRef]

Zolfaghari, A.

H. Elhila, A. Zolfaghari, J. Cazaux, J. C. Audran, D. Mouze, “X-ray microscopy and microtomography: application in biology,” J. Phys. (Paris) IV 6, 739–745 (1996).

J. Cazaux, D. Erre, D. Mouze, J. M. Patat, S. Rondot, A. Sasov, P. Trebbia, A. Zolfaghari, “Recent developments in x-ray projection microscopy and x-ray microtomography applied to materials science,” J. Phys. (Paris) IV 3, 2099–2104 (1993).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Z. H. Levine, A. R. Kalukin, S. P. Frigo, I. McNulty, M. Kuhn, “Tomographic reconstruction of an integrated circuit interconnect,” Appl. Phys. Lett. 74, 150–152 (1999).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. (Paris) IV (3)

J. Cazaux, D. Erre, D. Mouze, J. M. Patat, S. Rondot, A. Sasov, P. Trebbia, A. Zolfaghari, “Recent developments in x-ray projection microscopy and x-ray microtomography applied to materials science,” J. Phys. (Paris) IV 3, 2099–2104 (1993).

H. Elhila, A. Zolfaghari, J. Cazaux, J. C. Audran, D. Mouze, “X-ray microscopy and microtomography: application in biology,” J. Phys. (Paris) IV 6, 739–745 (1996).

D. Erre, H. Jibaoui, J. Cazaux, “X-ray microscopy by total reflectivity and grazing incidence Kossel diffraction,” J. Phys. (Paris) IV 6, 393–398 (1996).

J. Phys. D (1)

T. E. Gureyev, C. Raven, A. Snigirev, I. Snigireva, S. W. Wilkins, “Hard x-ray quantitative non-interferometric phase-contrast microscopy,” J. Phys. D 32, 563–567 (1999).
[CrossRef]

Nucl. Instrum. Methods A (3)

A. C. Thompson, J. H. Underwood, Y. Wu, R. D. Giauque, K. W. Jones, M. L. Rivers, “Elemental measurements with an x-ray microprobe of biological and geological samples with femtogram sensitivity,” Nucl. Instrum. Methods A 266, 318–323 (1988).
[CrossRef]

Y. Wu, A. C. Thompson, J. H. Underwood, R. D. Giauque, K. Chapman, M. L. Rivers, K. W. Jones, “A tunable x-ray microprobe using synchrotron radiation,” Nucl. Instrum. Methods A 291, 146–151 (1990).
[CrossRef]

T. Wroblewski, O. Glaub, H.-A. Crostack, A. Ertel, F. Fandrich, Ch. Genzel, K. Hradil, W. Ternes, E. Woldt, “A new diffractometer for materials science and imaging at HASYLAB beamline G3,” Nucl. Instrum. Methods A 428, 570–582 (1999).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (2)

C. Welnak, G. Chen, F. Cerrina, “Shadow: a synchrotron radiation and x-ray optics simulation tool,” Nucl. Instrum. Methods Phys. Res. A 347, 344–347 (1994).
[CrossRef]

J. H. Underwood, A. C. Thompson, Y. Wu, R. D. Giauque, “X-ray microprobe using multilayer mirrors,” Nucl. Instrum. Methods Phys. Res. A 266, 296–302 (1988).
[CrossRef]

Phys. Rev. Lett. (1)

P. Spanne, J. H. Thovert, C. J. Jacquin, W. B. Lindquist, K. W. Jones, P. M. Adler, “Synchrotron computed microtomography of porous media—topology and transports,” Phys. Rev. Lett. 73, 2001–2004 (1994).
[CrossRef] [PubMed]

Phys. Rev. Sect. B (1)

D. Erre, E. Bourelle, B. Claude-Montigny, A. Metrot, J. Cazaux, “Following the intercalation process of H2SO4 into pyrographite by x-ray microscopy,” Phys. Rev. Sect. B 56, 4944–4948 (1997).
[CrossRef]

Phys. Scr. (1)

C. Kunz, “X-ray microscopy,” Phys. Scr. T61, 19–25 (1996).
[CrossRef]

Phys. Status Solidi B (1)

V. G. Kohn, “On the theory of reflectivity by an x-ray multilayer mirror,” Phys. Status Solidi B 187, 61–70 (1995).
[CrossRef]

Rev. Sci. Instrum. (1)

J. H. Underwood, “High-energy x-ray microscopy with multilayer reflectors,” Rev. Sci. Instrum. 57, 2119–2123 (1986).
[CrossRef]

Rev. Sci. Instrum. A (1)

Y. Suzuki, F. Uchida, “Hard x-ray microprobe with total reflection mirrors,” Rev. Sci. Instrum. A 345, 578–580 (1992).
[CrossRef]

Other (3)

J. F. McGee, “A long wavelength x-ray microscope,” in X-Ray Microscopy and Microradiography, V. E. Coslett, A. Engstrom, H. H. Pattee, eds. (Academic, New York, 1957), pp. 164–176.

A. Bakulin, S. M. Durbin, C. Liu, J. Erdmann, A. T. Macrander, T. Jach, “Use of Kirkpatrick-Baez multilayer optics for x-ray fluorescence imaging,” in Crystal and Multilayer Optics, A. T. Macrander, A. K. Freund, T. Ishikawa, D. M. Mills, eds., Proc. SPIE3448, 218–223 (1998).
[CrossRef]

R. N. Watts, D. L. Ederer, R. D. Deslattes, T. B. Lucatorto, W. T. Estler, C. J. Evans, T. V. Vorburger, “Upgraded facility for multilayer mirror characterization at NIST,” in Multilayer Optics for Advanced X-Ray Applications, N. M. Ceglio, ed., Proc. SPIE1547, 159–166 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Basic geometry of image formation with a K–B x-ray microscope. A sealed anode x-ray tube is the source of backlit illumination of the object situated on the microscope’s object plane. (The object is shown as a square grid because a grid was used for testing the K–B prototype microscope reported here.) Diverging x rays transmitted by the object can reflect first from mirror 1 in the horizontal plane and then be reflected again by mirror 2 in the horizontal plane. Suitably curved mirror surfaces then focus these twice-reflected rays onto the image plane, where an imaging CCD camera (or film) is located. Mirror reflectivities are due to Bragg diffraction from multilayer coatings, which defines the angular acceptance of the mirrors. The entire device can be relatively compact, with the distance from object to image typically approximately 0.25 m.

Fig. 2
Fig. 2

Multilayer structure and x-ray reflectivity profile. Data set shows the measured x-ray reflectivity of the multilayers used in the K–B microscope. Inset shows the composition, consisting of 50 pairs of 20-Å carbon and 12-Å Pt-sputtered thin films. The peak first-order reflectivity is approximately 80% and closely approaches the value for an ideal structure. The solid curve is a fit that assumes an interfacial mixing length of 3.4 Å.

Fig. 3
Fig. 3

Focusing ability of the K–B microscope. Shown are three x-ray micrographs of the square Au wire grid (17.5-µm spacing) obtained (a) 3 cm in front of the image, (b) exactly at the calculated image plane, and (c) 3 cm past the image plane. The image is focused best exactly at the image plane, consistent with an imaging optical system. The image magnification increases with image distance, which accounts for image (a) having its exposed area appear smaller and brighter. The grid appears rectangular instead of square because of the different magnifications of the horizontal and vertical mirrors.

Fig. 4
Fig. 4

Line scan through the grid image. This trace corresponds to a vertical line through Fig. 3(b) showing the shadows of the 5-µm Au wires. The intensity at the edge of the wires drops completely in approximately 4 µm, a good measure of the image resolution. The underlying background is due to a combination of the 13% transmission through the Au wires, diffuse scattering from multilayer interface roughness, and spherical aberrations.

Fig. 5
Fig. 5

Determination of the image resolution. Top: image of the Au grid showing the 160 µm by 120 µm field of view (with a 20-s exposure time). Bottom: reference lines show the positions where the intensity at the edge of a wire drops from 90 to 10% of its peak-to-valley change. The 4-µm separation is a good measure of the image resolution.

Fig. 6
Fig. 6

Absorption image of 70-µm letter G from a copper transmission electron microscope finder grid. The apparent distortion is due to the different magnifications in the horizontal and vertical directions. Exposure time was 20 s.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

1u1+1v1=1f11u1+d+1v1-d=1f2,

Metrics