Abstract

We present a tunable extended-cavity semiconductor laser, based on the Littman configuration, which has been frequency-stabilized to Doppler-free hyperfine transitions in I2. The stability was measured compared with the reference He–Ne–I2 laser system, whereas the semiconductor laser was locked on components of the P(33) 6—3 transition close enough to the reference R(127) 11—5 line to allow beat frequency counting. A relative stability of 4 × 10-12 over a 100-s integration time was achieved. The laser configuration allowed mode-hop-free tuning over a range including the P(33) 6—3 transition and the group of strong overlapping transitions R(60) 8—4, R(125) 9—4, and P(54) 8—4 with higher signal-to-noise ratio than the P(33) 6—3 located approximately 13 GHz toward lower optical frequencies.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Zarka, J.-M. Chartier, J. Åman, E. Jaatinen, “Intracavity iodine cell spectroscopy with an extended-cavity laser diode around 633 nm,” IEEE Trans. Instrum. Meas. 46, 145–148 (1997).
    [CrossRef]
  2. H. Simonsen, “Iodine-stabilized extended cavity diode laser at lambda = 633 nm,” IEEE Trans. Instrum. Meas. 46, 141–144 (1997).
    [CrossRef]
  3. C. S. Edwards, G. P. Barwood, P. Gill, F. Rodríguez-Llorente, E. R. C. Rowley, “Frequency stabilized diode laser in the visible region using Doppler-free iodine spectra,” Opt. Commun. 132, 94–100 (1996).
    [CrossRef]
  4. H. Talvitie, M. Merimaa, E. Ikonen, “Frequency stabilization of a diode laser to Doppler-free spectrum of molecular iodine at 633 nm,” Opt. Commun. 152, 182–188 (1998).
    [CrossRef]
  5. F. Imkenberg, J. Lazar, A. Abou-Zeid, “Comparison of different methods of locking a tunable diode laser to iodine transitions for applications in interferometry,” in Conference of Lasers and Electro-Optics Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 133–135.
  6. M. G. Littman, “Single-mode operation of grazing-incidence pulsed dye laser,” Opt. Lett. 3, 138–140 (1978).
    [CrossRef] [PubMed]
  7. K. Liu, M. G. Littman, “Novel geometry for single-mode scanning of tunable lasers,” Opt. Lett. 6, 117–118 (1980).
    [CrossRef]
  8. P. McNicholl, H. J. Metcalf, “Synchronous cavity mode and feedback wavelength scanning in dye laser oscillators with gratings,” Appl. Opt. 24, 2757–2761 (1985).
    [CrossRef] [PubMed]
  9. K. G. Libbrecht, J. L. Hall, “A low-noise high-speed diode laser current controller,” Rev. Sci. Instrum. 64, 2133–2135 (1993).
    [CrossRef]
  10. B. Popela, P. Nesvadba, P. Pokorný, M. Horký, J. Kršek, J. Lazar, F. Máchal, “Two wavelength scanning interferometers for frequency analysis of laser radiation,” PTB Bericht F-19, 96–98 (1994).

1998 (1)

H. Talvitie, M. Merimaa, E. Ikonen, “Frequency stabilization of a diode laser to Doppler-free spectrum of molecular iodine at 633 nm,” Opt. Commun. 152, 182–188 (1998).
[CrossRef]

1997 (2)

A. Zarka, J.-M. Chartier, J. Åman, E. Jaatinen, “Intracavity iodine cell spectroscopy with an extended-cavity laser diode around 633 nm,” IEEE Trans. Instrum. Meas. 46, 145–148 (1997).
[CrossRef]

H. Simonsen, “Iodine-stabilized extended cavity diode laser at lambda = 633 nm,” IEEE Trans. Instrum. Meas. 46, 141–144 (1997).
[CrossRef]

1996 (1)

C. S. Edwards, G. P. Barwood, P. Gill, F. Rodríguez-Llorente, E. R. C. Rowley, “Frequency stabilized diode laser in the visible region using Doppler-free iodine spectra,” Opt. Commun. 132, 94–100 (1996).
[CrossRef]

1994 (1)

B. Popela, P. Nesvadba, P. Pokorný, M. Horký, J. Kršek, J. Lazar, F. Máchal, “Two wavelength scanning interferometers for frequency analysis of laser radiation,” PTB Bericht F-19, 96–98 (1994).

1993 (1)

K. G. Libbrecht, J. L. Hall, “A low-noise high-speed diode laser current controller,” Rev. Sci. Instrum. 64, 2133–2135 (1993).
[CrossRef]

1985 (1)

1980 (1)

1978 (1)

Abou-Zeid, A.

F. Imkenberg, J. Lazar, A. Abou-Zeid, “Comparison of different methods of locking a tunable diode laser to iodine transitions for applications in interferometry,” in Conference of Lasers and Electro-Optics Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 133–135.

Åman, J.

A. Zarka, J.-M. Chartier, J. Åman, E. Jaatinen, “Intracavity iodine cell spectroscopy with an extended-cavity laser diode around 633 nm,” IEEE Trans. Instrum. Meas. 46, 145–148 (1997).
[CrossRef]

Barwood, G. P.

C. S. Edwards, G. P. Barwood, P. Gill, F. Rodríguez-Llorente, E. R. C. Rowley, “Frequency stabilized diode laser in the visible region using Doppler-free iodine spectra,” Opt. Commun. 132, 94–100 (1996).
[CrossRef]

Chartier, J.-M.

A. Zarka, J.-M. Chartier, J. Åman, E. Jaatinen, “Intracavity iodine cell spectroscopy with an extended-cavity laser diode around 633 nm,” IEEE Trans. Instrum. Meas. 46, 145–148 (1997).
[CrossRef]

Edwards, C. S.

C. S. Edwards, G. P. Barwood, P. Gill, F. Rodríguez-Llorente, E. R. C. Rowley, “Frequency stabilized diode laser in the visible region using Doppler-free iodine spectra,” Opt. Commun. 132, 94–100 (1996).
[CrossRef]

Gill, P.

C. S. Edwards, G. P. Barwood, P. Gill, F. Rodríguez-Llorente, E. R. C. Rowley, “Frequency stabilized diode laser in the visible region using Doppler-free iodine spectra,” Opt. Commun. 132, 94–100 (1996).
[CrossRef]

Hall, J. L.

K. G. Libbrecht, J. L. Hall, “A low-noise high-speed diode laser current controller,” Rev. Sci. Instrum. 64, 2133–2135 (1993).
[CrossRef]

Horký, M.

B. Popela, P. Nesvadba, P. Pokorný, M. Horký, J. Kršek, J. Lazar, F. Máchal, “Two wavelength scanning interferometers for frequency analysis of laser radiation,” PTB Bericht F-19, 96–98 (1994).

Ikonen, E.

H. Talvitie, M. Merimaa, E. Ikonen, “Frequency stabilization of a diode laser to Doppler-free spectrum of molecular iodine at 633 nm,” Opt. Commun. 152, 182–188 (1998).
[CrossRef]

Imkenberg, F.

F. Imkenberg, J. Lazar, A. Abou-Zeid, “Comparison of different methods of locking a tunable diode laser to iodine transitions for applications in interferometry,” in Conference of Lasers and Electro-Optics Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 133–135.

Jaatinen, E.

A. Zarka, J.-M. Chartier, J. Åman, E. Jaatinen, “Intracavity iodine cell spectroscopy with an extended-cavity laser diode around 633 nm,” IEEE Trans. Instrum. Meas. 46, 145–148 (1997).
[CrossRef]

Kršek, J.

B. Popela, P. Nesvadba, P. Pokorný, M. Horký, J. Kršek, J. Lazar, F. Máchal, “Two wavelength scanning interferometers for frequency analysis of laser radiation,” PTB Bericht F-19, 96–98 (1994).

Lazar, J.

B. Popela, P. Nesvadba, P. Pokorný, M. Horký, J. Kršek, J. Lazar, F. Máchal, “Two wavelength scanning interferometers for frequency analysis of laser radiation,” PTB Bericht F-19, 96–98 (1994).

F. Imkenberg, J. Lazar, A. Abou-Zeid, “Comparison of different methods of locking a tunable diode laser to iodine transitions for applications in interferometry,” in Conference of Lasers and Electro-Optics Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 133–135.

Libbrecht, K. G.

K. G. Libbrecht, J. L. Hall, “A low-noise high-speed diode laser current controller,” Rev. Sci. Instrum. 64, 2133–2135 (1993).
[CrossRef]

Littman, M. G.

Liu, K.

Máchal, F.

B. Popela, P. Nesvadba, P. Pokorný, M. Horký, J. Kršek, J. Lazar, F. Máchal, “Two wavelength scanning interferometers for frequency analysis of laser radiation,” PTB Bericht F-19, 96–98 (1994).

McNicholl, P.

Merimaa, M.

H. Talvitie, M. Merimaa, E. Ikonen, “Frequency stabilization of a diode laser to Doppler-free spectrum of molecular iodine at 633 nm,” Opt. Commun. 152, 182–188 (1998).
[CrossRef]

Metcalf, H. J.

Nesvadba, P.

B. Popela, P. Nesvadba, P. Pokorný, M. Horký, J. Kršek, J. Lazar, F. Máchal, “Two wavelength scanning interferometers for frequency analysis of laser radiation,” PTB Bericht F-19, 96–98 (1994).

Pokorný, P.

B. Popela, P. Nesvadba, P. Pokorný, M. Horký, J. Kršek, J. Lazar, F. Máchal, “Two wavelength scanning interferometers for frequency analysis of laser radiation,” PTB Bericht F-19, 96–98 (1994).

Popela, B.

B. Popela, P. Nesvadba, P. Pokorný, M. Horký, J. Kršek, J. Lazar, F. Máchal, “Two wavelength scanning interferometers for frequency analysis of laser radiation,” PTB Bericht F-19, 96–98 (1994).

Rodríguez-Llorente, F.

C. S. Edwards, G. P. Barwood, P. Gill, F. Rodríguez-Llorente, E. R. C. Rowley, “Frequency stabilized diode laser in the visible region using Doppler-free iodine spectra,” Opt. Commun. 132, 94–100 (1996).
[CrossRef]

Rowley, E. R. C.

C. S. Edwards, G. P. Barwood, P. Gill, F. Rodríguez-Llorente, E. R. C. Rowley, “Frequency stabilized diode laser in the visible region using Doppler-free iodine spectra,” Opt. Commun. 132, 94–100 (1996).
[CrossRef]

Simonsen, H.

H. Simonsen, “Iodine-stabilized extended cavity diode laser at lambda = 633 nm,” IEEE Trans. Instrum. Meas. 46, 141–144 (1997).
[CrossRef]

Talvitie, H.

H. Talvitie, M. Merimaa, E. Ikonen, “Frequency stabilization of a diode laser to Doppler-free spectrum of molecular iodine at 633 nm,” Opt. Commun. 152, 182–188 (1998).
[CrossRef]

Zarka, A.

A. Zarka, J.-M. Chartier, J. Åman, E. Jaatinen, “Intracavity iodine cell spectroscopy with an extended-cavity laser diode around 633 nm,” IEEE Trans. Instrum. Meas. 46, 145–148 (1997).
[CrossRef]

Appl. Opt. (1)

IEEE Trans. Instrum. Meas. (2)

A. Zarka, J.-M. Chartier, J. Åman, E. Jaatinen, “Intracavity iodine cell spectroscopy with an extended-cavity laser diode around 633 nm,” IEEE Trans. Instrum. Meas. 46, 145–148 (1997).
[CrossRef]

H. Simonsen, “Iodine-stabilized extended cavity diode laser at lambda = 633 nm,” IEEE Trans. Instrum. Meas. 46, 141–144 (1997).
[CrossRef]

Opt. Commun. (2)

C. S. Edwards, G. P. Barwood, P. Gill, F. Rodríguez-Llorente, E. R. C. Rowley, “Frequency stabilized diode laser in the visible region using Doppler-free iodine spectra,” Opt. Commun. 132, 94–100 (1996).
[CrossRef]

H. Talvitie, M. Merimaa, E. Ikonen, “Frequency stabilization of a diode laser to Doppler-free spectrum of molecular iodine at 633 nm,” Opt. Commun. 152, 182–188 (1998).
[CrossRef]

Opt. Lett. (2)

PTB Bericht (1)

B. Popela, P. Nesvadba, P. Pokorný, M. Horký, J. Kršek, J. Lazar, F. Máchal, “Two wavelength scanning interferometers for frequency analysis of laser radiation,” PTB Bericht F-19, 96–98 (1994).

Rev. Sci. Instrum. (1)

K. G. Libbrecht, J. L. Hall, “A low-noise high-speed diode laser current controller,” Rev. Sci. Instrum. 64, 2133–2135 (1993).
[CrossRef]

Other (1)

F. Imkenberg, J. Lazar, A. Abou-Zeid, “Comparison of different methods of locking a tunable diode laser to iodine transitions for applications in interferometry,” in Conference of Lasers and Electro-Optics Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 133–135.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Cross section of the extended-cavity semiconductor laser: C, Peltier cooler; R, radiator; S, screw; SP, spring; GH, grating holder; PZT, piezoelectric transducer; MH, mirror holder; IS, thermal and electrical insulation; LD, antireflection-coated laser diode; L, lens.

Fig. 2
Fig. 2

Experimental setup: APD, avalanche photodetector; F.-P., scanning Fabry–Perot cavity; L, lens; FC, fiber coupling; M, mirror; RM, removable mirror; PBS, polarizing beam splitter, λ/2, half-wave plate; λ/4, quarter-wave plate; FI, Faraday isolator; He–Ne, free-running He–Ne laser; ECL, extended-cavity diode laser; I2, 300-mm-long iodine cell; C, Peltier cooler.

Fig. 3
Fig. 3

Relative frequency stability expressed by the Allan standard deviation. The semiconductor laser was locked to a component of the P(33) 6—3 transition and compared with the He–Ne–I2 laser.

Fig. 4
Fig. 4

Iodine cell pressure dependence measured with the semiconductor laser.

Fig. 5
Fig. 5

Recording of the I2 spectrum in the 20-GHz range including the P(33) 6—3 transition and the group of strong transitions used during the comparison. The relative position of the frequency scale is derived from the piezoelectric transducer voltage and refers to the center of the R(127) 11—5 transition.

Metrics