Abstract

The concept of adaptivity in television holography is discussed, and various realizations of adaptivity are presented. In one possible variation, functions of the components of the optical arrangement may be changed to adapt them to measurement conditions. An additional peculiarity of the technique is that reference waves are produced by holographically reconstructed virtual images. A method, believed to be new, is introduced for synthesizing the phase front of the master object beam that is produced by a simple holographic optical element and is used as a smooth or a speckled reference beam in the electronic speckle-pattern interferometer. An adaptive interferometer is presented as a measuring device for various measuring tasks. Selected applications are shown, demonstrating different aspects of adaptivity.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kujavinska, C. Kosinski, “Adaptability: problem or solution?” in Proceedings of the Third International Workshop on Automatic Processing of Fringe Patterns, W. Jüptner, W. Osten, eds. (Akademie-Verlag, Berlin, 1997), pp. 419–431.
  2. I. Yamaguchi, J. Liu, J. Kato, “Active phase-shifting interferometers for shape and deformation measurements,” Opt. Eng. 35, 2930–2937 (1996).
    [CrossRef]
  3. E. A. Barbosa, J. Frejlich, V. V. Prokofiev, N. J. H. Gallo, J. P. Andreeta, “Adaptive holographic interferometry for two-dimensional vibration mode display,” Opt. Eng. 33, 2659–2662 (1994).
    [CrossRef]
  4. A. Olszak, K. Patorski, “Modified electronic speckle-pattern interferometer with reduced number of elements for vibration analysis,” Opt. Commun. 138, 265–269 (1997).
    [CrossRef]
  5. M. Melozzi, L. Pezzati, A. Mazzoni, “Vibration-insensitive interferometer for on-line measurements,” Appl. Opt. 34, 5595–5601 (1995).
    [CrossRef] [PubMed]
  6. A. A. Freschi, J. Frejlich, “Adjustable phase control in stabilized interferometry,” Opt. Lett. 20, 635–637 (1995).
    [CrossRef] [PubMed]
  7. J. Kato, I. Yamaguchi, Q. Ping, “Automatic deformation analysis by a TV speckle interferometer using a laser diode,” Appl. Opt. 32, 77–83 (1993).
    [CrossRef] [PubMed]
  8. O. Sasaki, K. Takahashi, T. Suzuki, “Sinusoidal phase modulating laser diode interferometer with a feedback control system to eliminate external disturbance,” Opt. Eng. 29, 1511–1515 (1990).
    [CrossRef]
  9. J. L. Marroquin, M. Servin, R. Rodriguez-Vera, “Adaptive quadrature filters and the recovery of phase from fringe pattern images,” J. Opt. Soc. Am. A 14, 1742–1753 (1997).
    [CrossRef]
  10. J. A. Quiroga, A. Gonzalez-Cano, E. Bernabeu, “Phase-unwrapping algorithm based on an adaptive criterion,” Appl. Opt. 34, 2560–2563 (1985).
    [CrossRef]
  11. R. Sundaram, O. K. Ersoy, D. Hansen, “Adaptive approach to edge detection,” Opt. Eng. 34, 3271–3276 (1995).
    [CrossRef]
  12. C. Joenathan, R. S. Sirohi, “Holographic gratings in speckle shearing interferometry,” Appl. Opt. 24, 2750–2751 (1985).
    [CrossRef] [PubMed]
  13. C. Joenathan, R. K. Mohanty, R. S. Sirohi, “Lateral shear interferometry with shear lens,” Opt. Commun. 52, 153–156 (1984).
    [CrossRef]
  14. C. Joenathan, V. Parthiban, R. S. Sirohi, “Shear interferometry with holographic lenses,” Opt. Eng. 26, 359–364 (1987).
    [CrossRef]
  15. C. Joenathan, R. K. Mohanty, R. S. Sirohi, “Hololens in speckle and speckle shear interferometry,” Appl. Opt. 24, 1294–1298 (1985).
    [CrossRef] [PubMed]
  16. V. Petrov, B. Lau, “Electronic speckle pattern interferometry with a holographically generated reference wave,” Opt. Eng. 35, 2363–2370 (1997).
    [CrossRef]
  17. I. László, Z. Füzessy, J. Kornis, F. Gyimesi, “Comparative digital speckle pattern interferometry,” in Simulation and Experiment in Laser Metrology: Proceedings of the International Symposium on Laser Applications in Precision Measurements, Z. Füzessy, W. Jüptner, W. Osten, eds. (Akademie-Verlag, Berlin, 1996), pp. 146–150.
  18. Z. Füzessy, F. Gyímesi, B. Ráczkevi, J. Makai, J. Kornis, I. László, “Holographic illumination for comparative measurement,” Opt. Commun. 132, 29–34 (1996).
    [CrossRef]
  19. J. Kornis, A. Németh, I. László, “Measurement of wide scale displacement with difference digital speckle pattern interferometry,” in Proceedings of the Third International Workshop on Automatic Processing of Fringe Patterns, W. Jüptner, W. Osten, eds. (Akademie-Verlag, Berlin, 1997), pp. 337–340.
  20. N. A. Moustafa, J. Kornis, Z. Füzessy, “Comparative measurement by phase-shifting digital speckle interferometry using holographically generated reference wave,” Opt. Eng. 38, 1241–1245 (1999).
    [CrossRef]

1999

N. A. Moustafa, J. Kornis, Z. Füzessy, “Comparative measurement by phase-shifting digital speckle interferometry using holographically generated reference wave,” Opt. Eng. 38, 1241–1245 (1999).
[CrossRef]

1997

J. L. Marroquin, M. Servin, R. Rodriguez-Vera, “Adaptive quadrature filters and the recovery of phase from fringe pattern images,” J. Opt. Soc. Am. A 14, 1742–1753 (1997).
[CrossRef]

A. Olszak, K. Patorski, “Modified electronic speckle-pattern interferometer with reduced number of elements for vibration analysis,” Opt. Commun. 138, 265–269 (1997).
[CrossRef]

V. Petrov, B. Lau, “Electronic speckle pattern interferometry with a holographically generated reference wave,” Opt. Eng. 35, 2363–2370 (1997).
[CrossRef]

1996

Z. Füzessy, F. Gyímesi, B. Ráczkevi, J. Makai, J. Kornis, I. László, “Holographic illumination for comparative measurement,” Opt. Commun. 132, 29–34 (1996).
[CrossRef]

I. Yamaguchi, J. Liu, J. Kato, “Active phase-shifting interferometers for shape and deformation measurements,” Opt. Eng. 35, 2930–2937 (1996).
[CrossRef]

1995

1994

E. A. Barbosa, J. Frejlich, V. V. Prokofiev, N. J. H. Gallo, J. P. Andreeta, “Adaptive holographic interferometry for two-dimensional vibration mode display,” Opt. Eng. 33, 2659–2662 (1994).
[CrossRef]

1993

1990

O. Sasaki, K. Takahashi, T. Suzuki, “Sinusoidal phase modulating laser diode interferometer with a feedback control system to eliminate external disturbance,” Opt. Eng. 29, 1511–1515 (1990).
[CrossRef]

1987

C. Joenathan, V. Parthiban, R. S. Sirohi, “Shear interferometry with holographic lenses,” Opt. Eng. 26, 359–364 (1987).
[CrossRef]

1985

1984

C. Joenathan, R. K. Mohanty, R. S. Sirohi, “Lateral shear interferometry with shear lens,” Opt. Commun. 52, 153–156 (1984).
[CrossRef]

Andreeta, J. P.

E. A. Barbosa, J. Frejlich, V. V. Prokofiev, N. J. H. Gallo, J. P. Andreeta, “Adaptive holographic interferometry for two-dimensional vibration mode display,” Opt. Eng. 33, 2659–2662 (1994).
[CrossRef]

Barbosa, E. A.

E. A. Barbosa, J. Frejlich, V. V. Prokofiev, N. J. H. Gallo, J. P. Andreeta, “Adaptive holographic interferometry for two-dimensional vibration mode display,” Opt. Eng. 33, 2659–2662 (1994).
[CrossRef]

Bernabeu, E.

Ersoy, O. K.

R. Sundaram, O. K. Ersoy, D. Hansen, “Adaptive approach to edge detection,” Opt. Eng. 34, 3271–3276 (1995).
[CrossRef]

Frejlich, J.

A. A. Freschi, J. Frejlich, “Adjustable phase control in stabilized interferometry,” Opt. Lett. 20, 635–637 (1995).
[CrossRef] [PubMed]

E. A. Barbosa, J. Frejlich, V. V. Prokofiev, N. J. H. Gallo, J. P. Andreeta, “Adaptive holographic interferometry for two-dimensional vibration mode display,” Opt. Eng. 33, 2659–2662 (1994).
[CrossRef]

Freschi, A. A.

Füzessy, Z.

N. A. Moustafa, J. Kornis, Z. Füzessy, “Comparative measurement by phase-shifting digital speckle interferometry using holographically generated reference wave,” Opt. Eng. 38, 1241–1245 (1999).
[CrossRef]

Z. Füzessy, F. Gyímesi, B. Ráczkevi, J. Makai, J. Kornis, I. László, “Holographic illumination for comparative measurement,” Opt. Commun. 132, 29–34 (1996).
[CrossRef]

I. László, Z. Füzessy, J. Kornis, F. Gyimesi, “Comparative digital speckle pattern interferometry,” in Simulation and Experiment in Laser Metrology: Proceedings of the International Symposium on Laser Applications in Precision Measurements, Z. Füzessy, W. Jüptner, W. Osten, eds. (Akademie-Verlag, Berlin, 1996), pp. 146–150.

Gallo, N. J. H.

E. A. Barbosa, J. Frejlich, V. V. Prokofiev, N. J. H. Gallo, J. P. Andreeta, “Adaptive holographic interferometry for two-dimensional vibration mode display,” Opt. Eng. 33, 2659–2662 (1994).
[CrossRef]

Gonzalez-Cano, A.

Gyimesi, F.

I. László, Z. Füzessy, J. Kornis, F. Gyimesi, “Comparative digital speckle pattern interferometry,” in Simulation and Experiment in Laser Metrology: Proceedings of the International Symposium on Laser Applications in Precision Measurements, Z. Füzessy, W. Jüptner, W. Osten, eds. (Akademie-Verlag, Berlin, 1996), pp. 146–150.

Gyímesi, F.

Z. Füzessy, F. Gyímesi, B. Ráczkevi, J. Makai, J. Kornis, I. László, “Holographic illumination for comparative measurement,” Opt. Commun. 132, 29–34 (1996).
[CrossRef]

Hansen, D.

R. Sundaram, O. K. Ersoy, D. Hansen, “Adaptive approach to edge detection,” Opt. Eng. 34, 3271–3276 (1995).
[CrossRef]

Joenathan, C.

C. Joenathan, V. Parthiban, R. S. Sirohi, “Shear interferometry with holographic lenses,” Opt. Eng. 26, 359–364 (1987).
[CrossRef]

C. Joenathan, R. S. Sirohi, “Holographic gratings in speckle shearing interferometry,” Appl. Opt. 24, 2750–2751 (1985).
[CrossRef] [PubMed]

C. Joenathan, R. K. Mohanty, R. S. Sirohi, “Hololens in speckle and speckle shear interferometry,” Appl. Opt. 24, 1294–1298 (1985).
[CrossRef] [PubMed]

C. Joenathan, R. K. Mohanty, R. S. Sirohi, “Lateral shear interferometry with shear lens,” Opt. Commun. 52, 153–156 (1984).
[CrossRef]

Kato, J.

I. Yamaguchi, J. Liu, J. Kato, “Active phase-shifting interferometers for shape and deformation measurements,” Opt. Eng. 35, 2930–2937 (1996).
[CrossRef]

J. Kato, I. Yamaguchi, Q. Ping, “Automatic deformation analysis by a TV speckle interferometer using a laser diode,” Appl. Opt. 32, 77–83 (1993).
[CrossRef] [PubMed]

Kornis, J.

N. A. Moustafa, J. Kornis, Z. Füzessy, “Comparative measurement by phase-shifting digital speckle interferometry using holographically generated reference wave,” Opt. Eng. 38, 1241–1245 (1999).
[CrossRef]

Z. Füzessy, F. Gyímesi, B. Ráczkevi, J. Makai, J. Kornis, I. László, “Holographic illumination for comparative measurement,” Opt. Commun. 132, 29–34 (1996).
[CrossRef]

J. Kornis, A. Németh, I. László, “Measurement of wide scale displacement with difference digital speckle pattern interferometry,” in Proceedings of the Third International Workshop on Automatic Processing of Fringe Patterns, W. Jüptner, W. Osten, eds. (Akademie-Verlag, Berlin, 1997), pp. 337–340.

I. László, Z. Füzessy, J. Kornis, F. Gyimesi, “Comparative digital speckle pattern interferometry,” in Simulation and Experiment in Laser Metrology: Proceedings of the International Symposium on Laser Applications in Precision Measurements, Z. Füzessy, W. Jüptner, W. Osten, eds. (Akademie-Verlag, Berlin, 1996), pp. 146–150.

Kosinski, C.

M. Kujavinska, C. Kosinski, “Adaptability: problem or solution?” in Proceedings of the Third International Workshop on Automatic Processing of Fringe Patterns, W. Jüptner, W. Osten, eds. (Akademie-Verlag, Berlin, 1997), pp. 419–431.

Kujavinska, M.

M. Kujavinska, C. Kosinski, “Adaptability: problem or solution?” in Proceedings of the Third International Workshop on Automatic Processing of Fringe Patterns, W. Jüptner, W. Osten, eds. (Akademie-Verlag, Berlin, 1997), pp. 419–431.

László, I.

Z. Füzessy, F. Gyímesi, B. Ráczkevi, J. Makai, J. Kornis, I. László, “Holographic illumination for comparative measurement,” Opt. Commun. 132, 29–34 (1996).
[CrossRef]

I. László, Z. Füzessy, J. Kornis, F. Gyimesi, “Comparative digital speckle pattern interferometry,” in Simulation and Experiment in Laser Metrology: Proceedings of the International Symposium on Laser Applications in Precision Measurements, Z. Füzessy, W. Jüptner, W. Osten, eds. (Akademie-Verlag, Berlin, 1996), pp. 146–150.

J. Kornis, A. Németh, I. László, “Measurement of wide scale displacement with difference digital speckle pattern interferometry,” in Proceedings of the Third International Workshop on Automatic Processing of Fringe Patterns, W. Jüptner, W. Osten, eds. (Akademie-Verlag, Berlin, 1997), pp. 337–340.

Lau, B.

V. Petrov, B. Lau, “Electronic speckle pattern interferometry with a holographically generated reference wave,” Opt. Eng. 35, 2363–2370 (1997).
[CrossRef]

Liu, J.

I. Yamaguchi, J. Liu, J. Kato, “Active phase-shifting interferometers for shape and deformation measurements,” Opt. Eng. 35, 2930–2937 (1996).
[CrossRef]

Makai, J.

Z. Füzessy, F. Gyímesi, B. Ráczkevi, J. Makai, J. Kornis, I. László, “Holographic illumination for comparative measurement,” Opt. Commun. 132, 29–34 (1996).
[CrossRef]

Marroquin, J. L.

Mazzoni, A.

Melozzi, M.

Mohanty, R. K.

C. Joenathan, R. K. Mohanty, R. S. Sirohi, “Hololens in speckle and speckle shear interferometry,” Appl. Opt. 24, 1294–1298 (1985).
[CrossRef] [PubMed]

C. Joenathan, R. K. Mohanty, R. S. Sirohi, “Lateral shear interferometry with shear lens,” Opt. Commun. 52, 153–156 (1984).
[CrossRef]

Moustafa, N. A.

N. A. Moustafa, J. Kornis, Z. Füzessy, “Comparative measurement by phase-shifting digital speckle interferometry using holographically generated reference wave,” Opt. Eng. 38, 1241–1245 (1999).
[CrossRef]

Németh, A.

J. Kornis, A. Németh, I. László, “Measurement of wide scale displacement with difference digital speckle pattern interferometry,” in Proceedings of the Third International Workshop on Automatic Processing of Fringe Patterns, W. Jüptner, W. Osten, eds. (Akademie-Verlag, Berlin, 1997), pp. 337–340.

Olszak, A.

A. Olszak, K. Patorski, “Modified electronic speckle-pattern interferometer with reduced number of elements for vibration analysis,” Opt. Commun. 138, 265–269 (1997).
[CrossRef]

Parthiban, V.

C. Joenathan, V. Parthiban, R. S. Sirohi, “Shear interferometry with holographic lenses,” Opt. Eng. 26, 359–364 (1987).
[CrossRef]

Patorski, K.

A. Olszak, K. Patorski, “Modified electronic speckle-pattern interferometer with reduced number of elements for vibration analysis,” Opt. Commun. 138, 265–269 (1997).
[CrossRef]

Petrov, V.

V. Petrov, B. Lau, “Electronic speckle pattern interferometry with a holographically generated reference wave,” Opt. Eng. 35, 2363–2370 (1997).
[CrossRef]

Pezzati, L.

Ping, Q.

Prokofiev, V. V.

E. A. Barbosa, J. Frejlich, V. V. Prokofiev, N. J. H. Gallo, J. P. Andreeta, “Adaptive holographic interferometry for two-dimensional vibration mode display,” Opt. Eng. 33, 2659–2662 (1994).
[CrossRef]

Quiroga, J. A.

Ráczkevi, B.

Z. Füzessy, F. Gyímesi, B. Ráczkevi, J. Makai, J. Kornis, I. László, “Holographic illumination for comparative measurement,” Opt. Commun. 132, 29–34 (1996).
[CrossRef]

Rodriguez-Vera, R.

Sasaki, O.

O. Sasaki, K. Takahashi, T. Suzuki, “Sinusoidal phase modulating laser diode interferometer with a feedback control system to eliminate external disturbance,” Opt. Eng. 29, 1511–1515 (1990).
[CrossRef]

Servin, M.

Sirohi, R. S.

C. Joenathan, V. Parthiban, R. S. Sirohi, “Shear interferometry with holographic lenses,” Opt. Eng. 26, 359–364 (1987).
[CrossRef]

C. Joenathan, R. K. Mohanty, R. S. Sirohi, “Hololens in speckle and speckle shear interferometry,” Appl. Opt. 24, 1294–1298 (1985).
[CrossRef] [PubMed]

C. Joenathan, R. S. Sirohi, “Holographic gratings in speckle shearing interferometry,” Appl. Opt. 24, 2750–2751 (1985).
[CrossRef] [PubMed]

C. Joenathan, R. K. Mohanty, R. S. Sirohi, “Lateral shear interferometry with shear lens,” Opt. Commun. 52, 153–156 (1984).
[CrossRef]

Sundaram, R.

R. Sundaram, O. K. Ersoy, D. Hansen, “Adaptive approach to edge detection,” Opt. Eng. 34, 3271–3276 (1995).
[CrossRef]

Suzuki, T.

O. Sasaki, K. Takahashi, T. Suzuki, “Sinusoidal phase modulating laser diode interferometer with a feedback control system to eliminate external disturbance,” Opt. Eng. 29, 1511–1515 (1990).
[CrossRef]

Takahashi, K.

O. Sasaki, K. Takahashi, T. Suzuki, “Sinusoidal phase modulating laser diode interferometer with a feedback control system to eliminate external disturbance,” Opt. Eng. 29, 1511–1515 (1990).
[CrossRef]

Yamaguchi, I.

I. Yamaguchi, J. Liu, J. Kato, “Active phase-shifting interferometers for shape and deformation measurements,” Opt. Eng. 35, 2930–2937 (1996).
[CrossRef]

J. Kato, I. Yamaguchi, Q. Ping, “Automatic deformation analysis by a TV speckle interferometer using a laser diode,” Appl. Opt. 32, 77–83 (1993).
[CrossRef] [PubMed]

Appl. Opt.

J. Opt. Soc. Am. A

Opt. Commun.

Z. Füzessy, F. Gyímesi, B. Ráczkevi, J. Makai, J. Kornis, I. László, “Holographic illumination for comparative measurement,” Opt. Commun. 132, 29–34 (1996).
[CrossRef]

A. Olszak, K. Patorski, “Modified electronic speckle-pattern interferometer with reduced number of elements for vibration analysis,” Opt. Commun. 138, 265–269 (1997).
[CrossRef]

C. Joenathan, R. K. Mohanty, R. S. Sirohi, “Lateral shear interferometry with shear lens,” Opt. Commun. 52, 153–156 (1984).
[CrossRef]

Opt. Eng.

C. Joenathan, V. Parthiban, R. S. Sirohi, “Shear interferometry with holographic lenses,” Opt. Eng. 26, 359–364 (1987).
[CrossRef]

V. Petrov, B. Lau, “Electronic speckle pattern interferometry with a holographically generated reference wave,” Opt. Eng. 35, 2363–2370 (1997).
[CrossRef]

O. Sasaki, K. Takahashi, T. Suzuki, “Sinusoidal phase modulating laser diode interferometer with a feedback control system to eliminate external disturbance,” Opt. Eng. 29, 1511–1515 (1990).
[CrossRef]

R. Sundaram, O. K. Ersoy, D. Hansen, “Adaptive approach to edge detection,” Opt. Eng. 34, 3271–3276 (1995).
[CrossRef]

I. Yamaguchi, J. Liu, J. Kato, “Active phase-shifting interferometers for shape and deformation measurements,” Opt. Eng. 35, 2930–2937 (1996).
[CrossRef]

E. A. Barbosa, J. Frejlich, V. V. Prokofiev, N. J. H. Gallo, J. P. Andreeta, “Adaptive holographic interferometry for two-dimensional vibration mode display,” Opt. Eng. 33, 2659–2662 (1994).
[CrossRef]

N. A. Moustafa, J. Kornis, Z. Füzessy, “Comparative measurement by phase-shifting digital speckle interferometry using holographically generated reference wave,” Opt. Eng. 38, 1241–1245 (1999).
[CrossRef]

Opt. Lett.

Other

M. Kujavinska, C. Kosinski, “Adaptability: problem or solution?” in Proceedings of the Third International Workshop on Automatic Processing of Fringe Patterns, W. Jüptner, W. Osten, eds. (Akademie-Verlag, Berlin, 1997), pp. 419–431.

J. Kornis, A. Németh, I. László, “Measurement of wide scale displacement with difference digital speckle pattern interferometry,” in Proceedings of the Third International Workshop on Automatic Processing of Fringe Patterns, W. Jüptner, W. Osten, eds. (Akademie-Verlag, Berlin, 1997), pp. 337–340.

I. László, Z. Füzessy, J. Kornis, F. Gyimesi, “Comparative digital speckle pattern interferometry,” in Simulation and Experiment in Laser Metrology: Proceedings of the International Symposium on Laser Applications in Precision Measurements, Z. Füzessy, W. Jüptner, W. Osten, eds. (Akademie-Verlag, Berlin, 1996), pp. 146–150.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the applied arrangement. BE, beam expander; BS, beam splitter; C, CCD camera; H, holographic plate; M, mirror; MO, master object; TO, test object.

Fig. 2
Fig. 2

Measurement of the difference and sum of two deformation patterns. (a) Master object deformation pattern, (b) test object deformation pattern, (c) correlation fringes characterizing the difference between the deformations, (d) correlation fringe pattern if we measure the sum of the deformations (d).

Fig. 3
Fig. 3

Two-wavelength contour map of a ceramic plate. The dimension of the plate was 50 mm × 50 mm. The contouring depth was 5 µm.

Fig. 4
Fig. 4

Deformation measurement when the illumination of the object is not uniform. (a) Scattered light from the object The ratio of the two intensities was greater than 100. (b) and (c) When the intensity of the reference beam is adjusted, correlation fringes are presented only on halves of the object. The adaptive feature of the evaluation–controlling program can help to get the correlation fringes on the whole object surface with uniform visibility (d).

Fig. 5
Fig. 5

Application of the synthesized reference beam method. (a) Original fringe pattern built from two types of displacement. Separated displacement components: (b) rotation, (c) deformation.

Fig. 6
Fig. 6

Application of phase-stepping method in synthesized reference beam technique. (a) Original partially compensated correlation fringe pattern, (b) calculated phase map.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k 2πn i>ϕrk 2πni-1,

Metrics