Abstract

We measured the visible reflectance spectra of whole wing sections from three species of iridescent butterflies and moths, for normal incidence, integrated over all reflected angles. In this manner, we separated the optics of the thin films causing the iridescence from the optics of the rest of the scale. We found that iridescence reduces solar absorption by the wing in all cases, typically by approximately 20% or less, in contrast to claims by Miaoulis and Heilman [Ann. Entomol. Soc. Am. 91, 122 (1998)] that the thin-film structures that produce iridescence act as solar collectors.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Goreau, “Sur l’irisation des ailes des insectes,” Ann. Soc. Entomol. Fr., 2nd series 1, 201–215 (1843).
  2. C. W. Mason, “Structural colors in insects II,” J. Phys. Chem. 31, 321–354 (1927). (This article contains an excellent summary of the early history of the study of iridescence in insects.)
    [CrossRef]
  3. A. F. Huxley, “A theoretical treatment of the reflexion of light by multilayer structures,” J. Exp. Biol. 48, 227–245 (1968).
  4. H. T. Ghiradella, “Light and color on the wing: structural colors in butterflies and moths,” Appl. Opt. 30, 3492–3500 (1991).
    [CrossRef] [PubMed]
  5. B. D. Heilman, I. N. Miaoulis, “Insect thin films as solar collectors,” Appl. Opt. 33, 6642–6647 (1994).
    [CrossRef] [PubMed]
  6. I. N. Miaoulis, B. D. Heilman, “Butterfly thin films serve as solar collectors,” Ann. Entomol. Soc. Am. 91, 122–127 (1998).
  7. H. Tada, S. E. Mann, I. N. Miaoulis, P. Y. Wong, “Effects of a butterfly scale microstructure on the iridescent color observed at different angles,” Appl. Opt. 37, 1579–1584 (1998).
    [CrossRef]
  8. H. Tabata, K. Kumazawa, M. Funakawa, J. Takimoto, M. Akimoto, “Microstructures and optical properties of scales of butterfly wings,” Opt. Rev. 3, 129–145 (1996).
    [CrossRef]
  9. P. Vukusic, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. London Ser. B 266, 1403–1411 (1999).
    [CrossRef]
  10. T. D. Schultz, N. F. Hadley, “Structural colours of tiger beetles and their role in heat transfer through the integument,” Physiol. Zool. 60, 737–745 (1987).
  11. D. W. Koon, “Comment on ‘Butterfly thin films serve as solar collectors’,” Ann. Entomol. Soc. Am. 92, 459 (1999).
  12. Kodak Catalog no. 1181759. The reflectance of the white blank is more than 95% from less than 400 nm to greater than 1300 nm.
  13. A. A. M. Sayigh, Solar Energy Engineering (Academic, New York, 1977), as cited in Ref. 5.

1999 (2)

P. Vukusic, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. London Ser. B 266, 1403–1411 (1999).
[CrossRef]

D. W. Koon, “Comment on ‘Butterfly thin films serve as solar collectors’,” Ann. Entomol. Soc. Am. 92, 459 (1999).

1998 (2)

I. N. Miaoulis, B. D. Heilman, “Butterfly thin films serve as solar collectors,” Ann. Entomol. Soc. Am. 91, 122–127 (1998).

H. Tada, S. E. Mann, I. N. Miaoulis, P. Y. Wong, “Effects of a butterfly scale microstructure on the iridescent color observed at different angles,” Appl. Opt. 37, 1579–1584 (1998).
[CrossRef]

1996 (1)

H. Tabata, K. Kumazawa, M. Funakawa, J. Takimoto, M. Akimoto, “Microstructures and optical properties of scales of butterfly wings,” Opt. Rev. 3, 129–145 (1996).
[CrossRef]

1994 (1)

1991 (1)

1987 (1)

T. D. Schultz, N. F. Hadley, “Structural colours of tiger beetles and their role in heat transfer through the integument,” Physiol. Zool. 60, 737–745 (1987).

1968 (1)

A. F. Huxley, “A theoretical treatment of the reflexion of light by multilayer structures,” J. Exp. Biol. 48, 227–245 (1968).

1927 (1)

C. W. Mason, “Structural colors in insects II,” J. Phys. Chem. 31, 321–354 (1927). (This article contains an excellent summary of the early history of the study of iridescence in insects.)
[CrossRef]

1843 (1)

M. Goreau, “Sur l’irisation des ailes des insectes,” Ann. Soc. Entomol. Fr., 2nd series 1, 201–215 (1843).

Akimoto, M.

H. Tabata, K. Kumazawa, M. Funakawa, J. Takimoto, M. Akimoto, “Microstructures and optical properties of scales of butterfly wings,” Opt. Rev. 3, 129–145 (1996).
[CrossRef]

Funakawa, M.

H. Tabata, K. Kumazawa, M. Funakawa, J. Takimoto, M. Akimoto, “Microstructures and optical properties of scales of butterfly wings,” Opt. Rev. 3, 129–145 (1996).
[CrossRef]

Ghiradella, H. T.

Goreau, M.

M. Goreau, “Sur l’irisation des ailes des insectes,” Ann. Soc. Entomol. Fr., 2nd series 1, 201–215 (1843).

Hadley, N. F.

T. D. Schultz, N. F. Hadley, “Structural colours of tiger beetles and their role in heat transfer through the integument,” Physiol. Zool. 60, 737–745 (1987).

Heilman, B. D.

I. N. Miaoulis, B. D. Heilman, “Butterfly thin films serve as solar collectors,” Ann. Entomol. Soc. Am. 91, 122–127 (1998).

B. D. Heilman, I. N. Miaoulis, “Insect thin films as solar collectors,” Appl. Opt. 33, 6642–6647 (1994).
[CrossRef] [PubMed]

Huxley, A. F.

A. F. Huxley, “A theoretical treatment of the reflexion of light by multilayer structures,” J. Exp. Biol. 48, 227–245 (1968).

Koon, D. W.

D. W. Koon, “Comment on ‘Butterfly thin films serve as solar collectors’,” Ann. Entomol. Soc. Am. 92, 459 (1999).

Kumazawa, K.

H. Tabata, K. Kumazawa, M. Funakawa, J. Takimoto, M. Akimoto, “Microstructures and optical properties of scales of butterfly wings,” Opt. Rev. 3, 129–145 (1996).
[CrossRef]

Mann, S. E.

Mason, C. W.

C. W. Mason, “Structural colors in insects II,” J. Phys. Chem. 31, 321–354 (1927). (This article contains an excellent summary of the early history of the study of iridescence in insects.)
[CrossRef]

Miaoulis, I. N.

Sayigh, A. A. M.

A. A. M. Sayigh, Solar Energy Engineering (Academic, New York, 1977), as cited in Ref. 5.

Schultz, T. D.

T. D. Schultz, N. F. Hadley, “Structural colours of tiger beetles and their role in heat transfer through the integument,” Physiol. Zool. 60, 737–745 (1987).

Tabata, H.

H. Tabata, K. Kumazawa, M. Funakawa, J. Takimoto, M. Akimoto, “Microstructures and optical properties of scales of butterfly wings,” Opt. Rev. 3, 129–145 (1996).
[CrossRef]

Tada, H.

Takimoto, J.

H. Tabata, K. Kumazawa, M. Funakawa, J. Takimoto, M. Akimoto, “Microstructures and optical properties of scales of butterfly wings,” Opt. Rev. 3, 129–145 (1996).
[CrossRef]

Vukusic, P.

P. Vukusic, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. London Ser. B 266, 1403–1411 (1999).
[CrossRef]

Wong, P. Y.

Ann. Entomol. Soc. Am. (2)

I. N. Miaoulis, B. D. Heilman, “Butterfly thin films serve as solar collectors,” Ann. Entomol. Soc. Am. 91, 122–127 (1998).

D. W. Koon, “Comment on ‘Butterfly thin films serve as solar collectors’,” Ann. Entomol. Soc. Am. 92, 459 (1999).

Ann. Soc. Entomol. Fr. (1)

M. Goreau, “Sur l’irisation des ailes des insectes,” Ann. Soc. Entomol. Fr., 2nd series 1, 201–215 (1843).

Appl. Opt. (3)

J. Exp. Biol. (1)

A. F. Huxley, “A theoretical treatment of the reflexion of light by multilayer structures,” J. Exp. Biol. 48, 227–245 (1968).

J. Phys. Chem. (1)

C. W. Mason, “Structural colors in insects II,” J. Phys. Chem. 31, 321–354 (1927). (This article contains an excellent summary of the early history of the study of iridescence in insects.)
[CrossRef]

Opt. Rev. (1)

H. Tabata, K. Kumazawa, M. Funakawa, J. Takimoto, M. Akimoto, “Microstructures and optical properties of scales of butterfly wings,” Opt. Rev. 3, 129–145 (1996).
[CrossRef]

Physiol. Zool. (1)

T. D. Schultz, N. F. Hadley, “Structural colours of tiger beetles and their role in heat transfer through the integument,” Physiol. Zool. 60, 737–745 (1987).

Proc. R. Soc. London Ser. B (1)

P. Vukusic, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. London Ser. B 266, 1403–1411 (1999).
[CrossRef]

Other (2)

Kodak Catalog no. 1181759. The reflectance of the white blank is more than 95% from less than 400 nm to greater than 1300 nm.

A. A. M. Sayigh, Solar Energy Engineering (Academic, New York, 1977), as cited in Ref. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Geometry of the integrating sphere: IF, the illuminating fiber; DP, the detector, and Specimen, the position of the wing at the specimen port. To measure transmission, we illuminated the specimen from below with the transmitted light collected by the integrating sphere.

Fig. 2
Fig. 2

Reflectance spectrum for Morpho menelaus, both iridescent (solid curve) and index matched (diamonds).

Fig. 3
Fig. 3

Reflectance spectrum for Papilio blumei fruhstoferi, both iridescent (solid curve) and index matched (diamonds).

Fig. 4
Fig. 4

Reflectance spectrum for Urania ripheus, for iridescent (solid curves) and index matched (symbols), for both green (thin curve and x’s) and yellow-orange wing sections (thick curve and diamonds).

Metrics