Abstract

The use of vertical-cavity surface-emitting lasers (VCSEL’s) for optical detection of atmospheric oxygen is described. The VCSEL’s were custom designed for single-mode emission in the 763-nm wavelength range, with low noise and narrow optical linewidth. Using standard wavelength modulation spectroscopy and a second-harmonic detection scheme with a 1-m air path, we determined an oxygen concentration resolution of 0.2%. Because of its small size, low power dissipation, and good tunability characteristics, the VCSEL promises to be an attractive light source for use in compact, low-cost optical sensor microsystems for trace gas detection.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Garzon, I. Raistrick, E. Brosha, R. Houlton, B. W. Chung, “Dense diffusion barrier limiting current oxygen sensors,” Sens. Actuators B 50, 125–130 (1998).
    [CrossRef]
  2. J. Ried, J. Shewchun, B. K. Garside, E. A. Balik, “High sensitivity pollution detection employing tunable diode lasers,” Appl. Opt. 17, 300–307 (1978).
    [CrossRef]
  3. D. T. Casssidy, J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1185–1190 (1982).
    [CrossRef]
  4. M. Kroll, J. A. McClintock, O. Ollinger, “Measurement of gaseous oxygen using laser diode spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
    [CrossRef]
  5. P. Werle, F. Slemr, M. Gehrtz, C. Bräuchle, “Wideband noise characteristics of a lead salt diode laser: possibility of quantum noise limited TDLAS performance,” Appl. Opt. 28, 1638–1642 (1989).
    [CrossRef] [PubMed]
  6. D. S. Bomse, A. C. Stanton, J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
    [CrossRef] [PubMed]
  7. V. Weldon, J. O’Gorman, P. Phelan, T. Tanbun-Ek, “Gas sensing with λ = 1.57 µm distributed feedback laser diodes using overtone and combination band absorption,” Opt. Eng. 33, 3867–3870 (1994).
    [CrossRef]
  8. V. Weldon, J. O’Gorman, P. Phelan, J. Hegarty, T. Tanbun-Ek, “H2S and CO2 gas sensing using DFB laser diodes emitting at λ = 1.57 µm,” Sens. Actuators B 29, 101–107 (1995).
    [CrossRef]
  9. A. P. Larson, L. G. Sandström, S. Höjer, H. Ahlberg, B. Broberg, “Evaluation of distributed Bragg reflector lasers for high-sensitivity near-infrared gas analysis,” Opt. Eng. 36, 117–123 (1997).
    [CrossRef]
  10. V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
    [CrossRef] [PubMed]
  11. C. Corsi, M. Gabrysch, M. Inguscio, “Detection of molecular oxygen at high temperature using a DFB-diode-laser at 761 nm,” Opt. Commun. 128, 35–40 (1996).
    [CrossRef]
  12. L. Gianfrani, G. Gagliardi, G. Pesce, A. Sasso, “High-sensitivity detection of NO2 using a 740 nm semiconductor diode laser,” Appl. Phys. B 64, 487–491 (1997).
    [CrossRef]
  13. V. Weldon, J. O’Gorman, J. J. Pérez-Camacho, D. McDonald, J. Hegarty, B. Corbett, “Methane sensing with a novel micromachined single-frequency Fabry–Perot laser diode emitting at 1331 nm,” IEEE Photonics Technol. Lett. 9, 357–359 (1997).
    [CrossRef]
  14. D. Hovde, C. A. Parsons, “Wavelength modulation detection of water vapor with a vertical cavity surface-emitting laser,” Appl. Opt. 36, 1135–1138 (1997).
    [CrossRef] [PubMed]
  15. V. Weldon, J. O’Gorman, J. J. Pérez-Camacho, J. Hegarty, “Oxygen sensing using single-frequency GaAs-AlGaAs DFB laser diodes and VCSELs,” Electron. Lett. 32, 219–221 (1996).
    [CrossRef]
  16. M. Moser, K. H. Gulden, J. Epler, H. P. Schweizer, “High performance deep red AlAs/AlGaAs top-emitting VCSELs grown by MOVPE at high growth rates,” J. Cryst. Growth 170, 404–407 (1997).
    [CrossRef]
  17. S. Tranchart, I. H. Bachir, J.-L. Destombes, “Sensitive trace gas detection with near-infrared laser diodes and an integrating sphere,” Appl. Opt. 35, 7070–7074 (1996).
    [CrossRef] [PubMed]
  18. J. Reid, D. Labrie, “Second harmonic detection with tunable diode lasers: comparison of experiment and theory,” Appl. Opt. 26, 203–210 (1981).
  19. HITRAN92, version 2.31 (Ontar Corporation, North Andover, Mass., 1994).
  20. I. Linnerud, P. Kaspersen, T. Jaeger, “Gas monitoring in the process industry using laser diode spectroscopy,” Appl. Phys. B 67, 297–305 (1998).
    [CrossRef]
  21. W. B. Bewley, C. L. Felix, I. Vurgaftman, E. H. Aifer, L. J. Olafsen, J. R. Meyer, L. Goldberg, D. H. Chow, “Mid-infrared vertical-cavity surface-emitting lasers for chemical sensing,” Appl. Opt. 38, 1502–1505 (1999).
    [CrossRef]

1999

1998

I. Linnerud, P. Kaspersen, T. Jaeger, “Gas monitoring in the process industry using laser diode spectroscopy,” Appl. Phys. B 67, 297–305 (1998).
[CrossRef]

F. Garzon, I. Raistrick, E. Brosha, R. Houlton, B. W. Chung, “Dense diffusion barrier limiting current oxygen sensors,” Sens. Actuators B 50, 125–130 (1998).
[CrossRef]

1997

L. Gianfrani, G. Gagliardi, G. Pesce, A. Sasso, “High-sensitivity detection of NO2 using a 740 nm semiconductor diode laser,” Appl. Phys. B 64, 487–491 (1997).
[CrossRef]

V. Weldon, J. O’Gorman, J. J. Pérez-Camacho, D. McDonald, J. Hegarty, B. Corbett, “Methane sensing with a novel micromachined single-frequency Fabry–Perot laser diode emitting at 1331 nm,” IEEE Photonics Technol. Lett. 9, 357–359 (1997).
[CrossRef]

D. Hovde, C. A. Parsons, “Wavelength modulation detection of water vapor with a vertical cavity surface-emitting laser,” Appl. Opt. 36, 1135–1138 (1997).
[CrossRef] [PubMed]

A. P. Larson, L. G. Sandström, S. Höjer, H. Ahlberg, B. Broberg, “Evaluation of distributed Bragg reflector lasers for high-sensitivity near-infrared gas analysis,” Opt. Eng. 36, 117–123 (1997).
[CrossRef]

M. Moser, K. H. Gulden, J. Epler, H. P. Schweizer, “High performance deep red AlAs/AlGaAs top-emitting VCSELs grown by MOVPE at high growth rates,” J. Cryst. Growth 170, 404–407 (1997).
[CrossRef]

1996

S. Tranchart, I. H. Bachir, J.-L. Destombes, “Sensitive trace gas detection with near-infrared laser diodes and an integrating sphere,” Appl. Opt. 35, 7070–7074 (1996).
[CrossRef] [PubMed]

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
[CrossRef] [PubMed]

C. Corsi, M. Gabrysch, M. Inguscio, “Detection of molecular oxygen at high temperature using a DFB-diode-laser at 761 nm,” Opt. Commun. 128, 35–40 (1996).
[CrossRef]

V. Weldon, J. O’Gorman, J. J. Pérez-Camacho, J. Hegarty, “Oxygen sensing using single-frequency GaAs-AlGaAs DFB laser diodes and VCSELs,” Electron. Lett. 32, 219–221 (1996).
[CrossRef]

1995

V. Weldon, J. O’Gorman, P. Phelan, J. Hegarty, T. Tanbun-Ek, “H2S and CO2 gas sensing using DFB laser diodes emitting at λ = 1.57 µm,” Sens. Actuators B 29, 101–107 (1995).
[CrossRef]

1994

V. Weldon, J. O’Gorman, P. Phelan, T. Tanbun-Ek, “Gas sensing with λ = 1.57 µm distributed feedback laser diodes using overtone and combination band absorption,” Opt. Eng. 33, 3867–3870 (1994).
[CrossRef]

1992

1989

1987

M. Kroll, J. A. McClintock, O. Ollinger, “Measurement of gaseous oxygen using laser diode spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
[CrossRef]

1982

1981

1978

Ahlberg, H.

A. P. Larson, L. G. Sandström, S. Höjer, H. Ahlberg, B. Broberg, “Evaluation of distributed Bragg reflector lasers for high-sensitivity near-infrared gas analysis,” Opt. Eng. 36, 117–123 (1997).
[CrossRef]

Aifer, E. H.

Bachir, I. H.

Baer, D. S.

Balik, E. A.

Bewley, W. B.

Bomse, D. S.

Bräuchle, C.

Broberg, B.

A. P. Larson, L. G. Sandström, S. Höjer, H. Ahlberg, B. Broberg, “Evaluation of distributed Bragg reflector lasers for high-sensitivity near-infrared gas analysis,” Opt. Eng. 36, 117–123 (1997).
[CrossRef]

Brosha, E.

F. Garzon, I. Raistrick, E. Brosha, R. Houlton, B. W. Chung, “Dense diffusion barrier limiting current oxygen sensors,” Sens. Actuators B 50, 125–130 (1998).
[CrossRef]

Casssidy, D. T.

Chou, S. I.

Chow, D. H.

Chung, B. W.

F. Garzon, I. Raistrick, E. Brosha, R. Houlton, B. W. Chung, “Dense diffusion barrier limiting current oxygen sensors,” Sens. Actuators B 50, 125–130 (1998).
[CrossRef]

Corbett, B.

V. Weldon, J. O’Gorman, J. J. Pérez-Camacho, D. McDonald, J. Hegarty, B. Corbett, “Methane sensing with a novel micromachined single-frequency Fabry–Perot laser diode emitting at 1331 nm,” IEEE Photonics Technol. Lett. 9, 357–359 (1997).
[CrossRef]

Corsi, C.

C. Corsi, M. Gabrysch, M. Inguscio, “Detection of molecular oxygen at high temperature using a DFB-diode-laser at 761 nm,” Opt. Commun. 128, 35–40 (1996).
[CrossRef]

Destombes, J.-L.

Epler, J.

M. Moser, K. H. Gulden, J. Epler, H. P. Schweizer, “High performance deep red AlAs/AlGaAs top-emitting VCSELs grown by MOVPE at high growth rates,” J. Cryst. Growth 170, 404–407 (1997).
[CrossRef]

Felix, C. L.

Gabrysch, M.

C. Corsi, M. Gabrysch, M. Inguscio, “Detection of molecular oxygen at high temperature using a DFB-diode-laser at 761 nm,” Opt. Commun. 128, 35–40 (1996).
[CrossRef]

Gagliardi, G.

L. Gianfrani, G. Gagliardi, G. Pesce, A. Sasso, “High-sensitivity detection of NO2 using a 740 nm semiconductor diode laser,” Appl. Phys. B 64, 487–491 (1997).
[CrossRef]

Garside, B. K.

Garzon, F.

F. Garzon, I. Raistrick, E. Brosha, R. Houlton, B. W. Chung, “Dense diffusion barrier limiting current oxygen sensors,” Sens. Actuators B 50, 125–130 (1998).
[CrossRef]

Gehrtz, M.

Gianfrani, L.

L. Gianfrani, G. Gagliardi, G. Pesce, A. Sasso, “High-sensitivity detection of NO2 using a 740 nm semiconductor diode laser,” Appl. Phys. B 64, 487–491 (1997).
[CrossRef]

Goldberg, L.

Gulden, K. H.

M. Moser, K. H. Gulden, J. Epler, H. P. Schweizer, “High performance deep red AlAs/AlGaAs top-emitting VCSELs grown by MOVPE at high growth rates,” J. Cryst. Growth 170, 404–407 (1997).
[CrossRef]

Hanson, R. K.

Hegarty, J.

V. Weldon, J. O’Gorman, J. J. Pérez-Camacho, D. McDonald, J. Hegarty, B. Corbett, “Methane sensing with a novel micromachined single-frequency Fabry–Perot laser diode emitting at 1331 nm,” IEEE Photonics Technol. Lett. 9, 357–359 (1997).
[CrossRef]

V. Weldon, J. O’Gorman, J. J. Pérez-Camacho, J. Hegarty, “Oxygen sensing using single-frequency GaAs-AlGaAs DFB laser diodes and VCSELs,” Electron. Lett. 32, 219–221 (1996).
[CrossRef]

V. Weldon, J. O’Gorman, P. Phelan, J. Hegarty, T. Tanbun-Ek, “H2S and CO2 gas sensing using DFB laser diodes emitting at λ = 1.57 µm,” Sens. Actuators B 29, 101–107 (1995).
[CrossRef]

Höjer, S.

A. P. Larson, L. G. Sandström, S. Höjer, H. Ahlberg, B. Broberg, “Evaluation of distributed Bragg reflector lasers for high-sensitivity near-infrared gas analysis,” Opt. Eng. 36, 117–123 (1997).
[CrossRef]

Houlton, R.

F. Garzon, I. Raistrick, E. Brosha, R. Houlton, B. W. Chung, “Dense diffusion barrier limiting current oxygen sensors,” Sens. Actuators B 50, 125–130 (1998).
[CrossRef]

Hovde, D.

Inguscio, M.

C. Corsi, M. Gabrysch, M. Inguscio, “Detection of molecular oxygen at high temperature using a DFB-diode-laser at 761 nm,” Opt. Commun. 128, 35–40 (1996).
[CrossRef]

Jaeger, T.

I. Linnerud, P. Kaspersen, T. Jaeger, “Gas monitoring in the process industry using laser diode spectroscopy,” Appl. Phys. B 67, 297–305 (1998).
[CrossRef]

Kaspersen, P.

I. Linnerud, P. Kaspersen, T. Jaeger, “Gas monitoring in the process industry using laser diode spectroscopy,” Appl. Phys. B 67, 297–305 (1998).
[CrossRef]

Kroll, M.

M. Kroll, J. A. McClintock, O. Ollinger, “Measurement of gaseous oxygen using laser diode spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
[CrossRef]

Labrie, D.

Larson, A. P.

A. P. Larson, L. G. Sandström, S. Höjer, H. Ahlberg, B. Broberg, “Evaluation of distributed Bragg reflector lasers for high-sensitivity near-infrared gas analysis,” Opt. Eng. 36, 117–123 (1997).
[CrossRef]

Linnerud, I.

I. Linnerud, P. Kaspersen, T. Jaeger, “Gas monitoring in the process industry using laser diode spectroscopy,” Appl. Phys. B 67, 297–305 (1998).
[CrossRef]

McClintock, J. A.

M. Kroll, J. A. McClintock, O. Ollinger, “Measurement of gaseous oxygen using laser diode spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
[CrossRef]

McDonald, D.

V. Weldon, J. O’Gorman, J. J. Pérez-Camacho, D. McDonald, J. Hegarty, B. Corbett, “Methane sensing with a novel micromachined single-frequency Fabry–Perot laser diode emitting at 1331 nm,” IEEE Photonics Technol. Lett. 9, 357–359 (1997).
[CrossRef]

Meyer, J. R.

Moser, M.

M. Moser, K. H. Gulden, J. Epler, H. P. Schweizer, “High performance deep red AlAs/AlGaAs top-emitting VCSELs grown by MOVPE at high growth rates,” J. Cryst. Growth 170, 404–407 (1997).
[CrossRef]

Nagali, V.

O’Gorman, J.

V. Weldon, J. O’Gorman, J. J. Pérez-Camacho, D. McDonald, J. Hegarty, B. Corbett, “Methane sensing with a novel micromachined single-frequency Fabry–Perot laser diode emitting at 1331 nm,” IEEE Photonics Technol. Lett. 9, 357–359 (1997).
[CrossRef]

V. Weldon, J. O’Gorman, J. J. Pérez-Camacho, J. Hegarty, “Oxygen sensing using single-frequency GaAs-AlGaAs DFB laser diodes and VCSELs,” Electron. Lett. 32, 219–221 (1996).
[CrossRef]

V. Weldon, J. O’Gorman, P. Phelan, J. Hegarty, T. Tanbun-Ek, “H2S and CO2 gas sensing using DFB laser diodes emitting at λ = 1.57 µm,” Sens. Actuators B 29, 101–107 (1995).
[CrossRef]

V. Weldon, J. O’Gorman, P. Phelan, T. Tanbun-Ek, “Gas sensing with λ = 1.57 µm distributed feedback laser diodes using overtone and combination band absorption,” Opt. Eng. 33, 3867–3870 (1994).
[CrossRef]

Olafsen, L. J.

Ollinger, O.

M. Kroll, J. A. McClintock, O. Ollinger, “Measurement of gaseous oxygen using laser diode spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
[CrossRef]

Parsons, C. A.

Pérez-Camacho, J. J.

V. Weldon, J. O’Gorman, J. J. Pérez-Camacho, D. McDonald, J. Hegarty, B. Corbett, “Methane sensing with a novel micromachined single-frequency Fabry–Perot laser diode emitting at 1331 nm,” IEEE Photonics Technol. Lett. 9, 357–359 (1997).
[CrossRef]

V. Weldon, J. O’Gorman, J. J. Pérez-Camacho, J. Hegarty, “Oxygen sensing using single-frequency GaAs-AlGaAs DFB laser diodes and VCSELs,” Electron. Lett. 32, 219–221 (1996).
[CrossRef]

Pesce, G.

L. Gianfrani, G. Gagliardi, G. Pesce, A. Sasso, “High-sensitivity detection of NO2 using a 740 nm semiconductor diode laser,” Appl. Phys. B 64, 487–491 (1997).
[CrossRef]

Phelan, P.

V. Weldon, J. O’Gorman, P. Phelan, J. Hegarty, T. Tanbun-Ek, “H2S and CO2 gas sensing using DFB laser diodes emitting at λ = 1.57 µm,” Sens. Actuators B 29, 101–107 (1995).
[CrossRef]

V. Weldon, J. O’Gorman, P. Phelan, T. Tanbun-Ek, “Gas sensing with λ = 1.57 µm distributed feedback laser diodes using overtone and combination band absorption,” Opt. Eng. 33, 3867–3870 (1994).
[CrossRef]

Raistrick, I.

F. Garzon, I. Raistrick, E. Brosha, R. Houlton, B. W. Chung, “Dense diffusion barrier limiting current oxygen sensors,” Sens. Actuators B 50, 125–130 (1998).
[CrossRef]

Reid, J.

Ried, J.

Sandström, L. G.

A. P. Larson, L. G. Sandström, S. Höjer, H. Ahlberg, B. Broberg, “Evaluation of distributed Bragg reflector lasers for high-sensitivity near-infrared gas analysis,” Opt. Eng. 36, 117–123 (1997).
[CrossRef]

Sasso, A.

L. Gianfrani, G. Gagliardi, G. Pesce, A. Sasso, “High-sensitivity detection of NO2 using a 740 nm semiconductor diode laser,” Appl. Phys. B 64, 487–491 (1997).
[CrossRef]

Schweizer, H. P.

M. Moser, K. H. Gulden, J. Epler, H. P. Schweizer, “High performance deep red AlAs/AlGaAs top-emitting VCSELs grown by MOVPE at high growth rates,” J. Cryst. Growth 170, 404–407 (1997).
[CrossRef]

Segall, J.

Shewchun, J.

Silver, J. A.

Slemr, F.

Stanton, A. C.

Tanbun-Ek, T.

V. Weldon, J. O’Gorman, P. Phelan, J. Hegarty, T. Tanbun-Ek, “H2S and CO2 gas sensing using DFB laser diodes emitting at λ = 1.57 µm,” Sens. Actuators B 29, 101–107 (1995).
[CrossRef]

V. Weldon, J. O’Gorman, P. Phelan, T. Tanbun-Ek, “Gas sensing with λ = 1.57 µm distributed feedback laser diodes using overtone and combination band absorption,” Opt. Eng. 33, 3867–3870 (1994).
[CrossRef]

Tranchart, S.

Vurgaftman, I.

Weldon, V.

V. Weldon, J. O’Gorman, J. J. Pérez-Camacho, D. McDonald, J. Hegarty, B. Corbett, “Methane sensing with a novel micromachined single-frequency Fabry–Perot laser diode emitting at 1331 nm,” IEEE Photonics Technol. Lett. 9, 357–359 (1997).
[CrossRef]

V. Weldon, J. O’Gorman, J. J. Pérez-Camacho, J. Hegarty, “Oxygen sensing using single-frequency GaAs-AlGaAs DFB laser diodes and VCSELs,” Electron. Lett. 32, 219–221 (1996).
[CrossRef]

V. Weldon, J. O’Gorman, P. Phelan, J. Hegarty, T. Tanbun-Ek, “H2S and CO2 gas sensing using DFB laser diodes emitting at λ = 1.57 µm,” Sens. Actuators B 29, 101–107 (1995).
[CrossRef]

V. Weldon, J. O’Gorman, P. Phelan, T. Tanbun-Ek, “Gas sensing with λ = 1.57 µm distributed feedback laser diodes using overtone and combination band absorption,” Opt. Eng. 33, 3867–3870 (1994).
[CrossRef]

Werle, P.

Appl. Opt.

P. Werle, F. Slemr, M. Gehrtz, C. Bräuchle, “Wideband noise characteristics of a lead salt diode laser: possibility of quantum noise limited TDLAS performance,” Appl. Opt. 28, 1638–1642 (1989).
[CrossRef] [PubMed]

D. S. Bomse, A. C. Stanton, J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
[CrossRef] [PubMed]

J. Ried, J. Shewchun, B. K. Garside, E. A. Balik, “High sensitivity pollution detection employing tunable diode lasers,” Appl. Opt. 17, 300–307 (1978).
[CrossRef]

D. T. Casssidy, J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1185–1190 (1982).
[CrossRef]

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
[CrossRef] [PubMed]

D. Hovde, C. A. Parsons, “Wavelength modulation detection of water vapor with a vertical cavity surface-emitting laser,” Appl. Opt. 36, 1135–1138 (1997).
[CrossRef] [PubMed]

S. Tranchart, I. H. Bachir, J.-L. Destombes, “Sensitive trace gas detection with near-infrared laser diodes and an integrating sphere,” Appl. Opt. 35, 7070–7074 (1996).
[CrossRef] [PubMed]

J. Reid, D. Labrie, “Second harmonic detection with tunable diode lasers: comparison of experiment and theory,” Appl. Opt. 26, 203–210 (1981).

W. B. Bewley, C. L. Felix, I. Vurgaftman, E. H. Aifer, L. J. Olafsen, J. R. Meyer, L. Goldberg, D. H. Chow, “Mid-infrared vertical-cavity surface-emitting lasers for chemical sensing,” Appl. Opt. 38, 1502–1505 (1999).
[CrossRef]

Appl. Phys. B

I. Linnerud, P. Kaspersen, T. Jaeger, “Gas monitoring in the process industry using laser diode spectroscopy,” Appl. Phys. B 67, 297–305 (1998).
[CrossRef]

L. Gianfrani, G. Gagliardi, G. Pesce, A. Sasso, “High-sensitivity detection of NO2 using a 740 nm semiconductor diode laser,” Appl. Phys. B 64, 487–491 (1997).
[CrossRef]

Appl. Phys. Lett.

M. Kroll, J. A. McClintock, O. Ollinger, “Measurement of gaseous oxygen using laser diode spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
[CrossRef]

Electron. Lett.

V. Weldon, J. O’Gorman, J. J. Pérez-Camacho, J. Hegarty, “Oxygen sensing using single-frequency GaAs-AlGaAs DFB laser diodes and VCSELs,” Electron. Lett. 32, 219–221 (1996).
[CrossRef]

IEEE Photonics Technol. Lett.

V. Weldon, J. O’Gorman, J. J. Pérez-Camacho, D. McDonald, J. Hegarty, B. Corbett, “Methane sensing with a novel micromachined single-frequency Fabry–Perot laser diode emitting at 1331 nm,” IEEE Photonics Technol. Lett. 9, 357–359 (1997).
[CrossRef]

J. Cryst. Growth

M. Moser, K. H. Gulden, J. Epler, H. P. Schweizer, “High performance deep red AlAs/AlGaAs top-emitting VCSELs grown by MOVPE at high growth rates,” J. Cryst. Growth 170, 404–407 (1997).
[CrossRef]

Opt. Commun.

C. Corsi, M. Gabrysch, M. Inguscio, “Detection of molecular oxygen at high temperature using a DFB-diode-laser at 761 nm,” Opt. Commun. 128, 35–40 (1996).
[CrossRef]

Opt. Eng.

A. P. Larson, L. G. Sandström, S. Höjer, H. Ahlberg, B. Broberg, “Evaluation of distributed Bragg reflector lasers for high-sensitivity near-infrared gas analysis,” Opt. Eng. 36, 117–123 (1997).
[CrossRef]

V. Weldon, J. O’Gorman, P. Phelan, T. Tanbun-Ek, “Gas sensing with λ = 1.57 µm distributed feedback laser diodes using overtone and combination band absorption,” Opt. Eng. 33, 3867–3870 (1994).
[CrossRef]

Sens. Actuators B

V. Weldon, J. O’Gorman, P. Phelan, J. Hegarty, T. Tanbun-Ek, “H2S and CO2 gas sensing using DFB laser diodes emitting at λ = 1.57 µm,” Sens. Actuators B 29, 101–107 (1995).
[CrossRef]

F. Garzon, I. Raistrick, E. Brosha, R. Houlton, B. W. Chung, “Dense diffusion barrier limiting current oxygen sensors,” Sens. Actuators B 50, 125–130 (1998).
[CrossRef]

Other

HITRAN92, version 2.31 (Ontar Corporation, North Andover, Mass., 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Single-mode output spectra of a 763-nm laser at different drive currents. We measured these spectra by using a spectrometer with 0.1-nm resolution.

Fig. 2
Fig. 2

Linewidth of the O2 VCSEL as measured by the scanning Fabry–Perot interferometer with 600-kHz resolution. The FWHM corresponds to a laser linewidth of Δν = 3.4 ± 0.6 MHz.

Fig. 3
Fig. 3

Direct power versus current scan of VCSEL output showing six O2 absorption peaks; the measurement path was 3.25 m in this case. Two additional peaks were lost in the noise at I ∼ 3.2 mA. The maximum signal-to-noise ratio is approximately 5.

Fig. 4
Fig. 4

Schematic diagram of the WMS oxygen-detection system by use of the O2 VCSEL. The measurement path was 1 m through ambient air.

Fig. 5
Fig. 5

Scan across two O2 lines for a 1-m ambient air path plus the reference signal; the 2f (second derivative) signals are also shown. The oxygen absorption lines at 763.312 and 763.427 nm can be clearly seen, with a signal-to-noise ratio of ∼100. I th is at approximately 3.1 mA.

Metrics