Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Relation between coupled-mode theory and equivalent layers for multilayer interference coatings

Not Accessible

Your library or personal account may give you access

Abstract

The method of equivalent layers is a commonly used technique for designing optical multilayer interference coatings. Herpin’s theorem [C. R. Acad. Sci. 225, 182 (1947)] states that every symmetrical multilayer structure is equivalent, at one arbitrary wavelength, to a single homogeneous layer. The Herpin equivalent layer is described by two design parameters, the equivalent index and the equivalent thickness. Alternatively, we recently developed an exact coupled-mode analysis for the description of multilayer interference coatings composed of a symmetrical combination of layers. The design parameters of the coupled-mode theory are the exact coupling coefficient and the exact detuning coefficient. Recently we used this method in the design of chirped mirrors for dispersion compensation. We prove that the two methods are equivalent and derive relations that link the design parameters of both formalisms. By use of these relations it is possible to translate between the coupled-mode formalism and the method of equivalent layers. The simultaneous availability of both design methods gives a new perspective on the analytical design of optical interference coatings with challenging spectral response characteristics.

© 2000 Optical Society of America

Full Article  |  PDF Article
More Like This
Optical coating design algorithm based on the equivalent layers theory

Alexander V. Tikhonravov, Michael K. Trubetskov, Tatiana V. Amotchkina, and Alfred Thelen
Appl. Opt. 45(7) 1530-1538 (2006)

Antireflection design concepts with equivalent layers

Uwe B. Schallenberg
Appl. Opt. 45(7) 1507-1514 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (27)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved