Abstract

Transmission and reflection characteristics of inductive-mesh frequency-selective surfaces were measured in the 4–12-µm range. Specific issues investigated include the effect of interelement spacing on the location and width of the resonance and the influence of superstrate and substrate refractive indices on the spectral response of the structure.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967).
    [CrossRef]
  2. J. G. Gallagher, D. J. Brammer, “Scattering from an infinite array of periodic broken wires buried in a dielectric sheet,” Radio Sci. 20, 50–62 (1985).
    [CrossRef]
  3. R. Mittra, C. Chan, T. Cwik, “Techniques for analyzing frequency selective surfaces—a review,” IEEE Proc. 76, 1593–1615 (1988).
    [CrossRef]
  4. E. L. Pelton, B. A. Munk, “Scattering from periodic arrays of crossed dipoles,” IEEE Trans. Antennas Propag. AP-27, 323–330 (1979).
    [CrossRef]
  5. S. M. A. Hamdy, E. A. Parker, “Influence of lattice geometry on transmission of electromagnetic waves through arrays of crossed dipoles,” IEE Proc. Part H 129, 7–10 (1982).
  6. C. H. Tsao, R. Mittra, “Spectral domain analysis of frequency selective surfaces comprised of periodic arrays of crossed dipoles and Jerusalem crosses,” IEEE Trans. Antennas Propag. AP-32, 478–486 (1984).
    [CrossRef]
  7. R. J. Langley, A. J. Drinkwater, “Improved empirical model for the Jerusalem cross,” IEE Proc. Part H 129, 1–6 (1982).
  8. J. C. Vardaxoglou, E. Parker, “Performance of two tripole arrays as frequency selective surfaces,” Electron. Lett. 19, 709–710 (1983).
    [CrossRef]
  9. S. M. Hamdy, E. A. Parker, “Current distribution on elements of a square loop frequency selective surface,” Electron. Lett. 18, 624–626 (1982).
    [CrossRef]
  10. K. J. Kogler, R. G. Pastor, “Infrared filters fabricated from submicron loop antenna arrays,” Appl. Opt. 27, 18–19 (1988).
    [CrossRef] [PubMed]
  11. T. Timusk, P. L. Richards, “Near millimeter wave bandpass filters,” Appl. Opt. 20, 1355–1358 (1981).
    [CrossRef] [PubMed]
  12. S. E. Whitcomb, J. Keene, “Low-pass interference filters for submillimeter astronomy,” Appl. Opt. 19, 197–198 (1980).
    [CrossRef] [PubMed]
  13. V. P. Tomaselli, D. C. Edewaard, P. Gillian, K. D. Moller, “Far-infrared bandpass filters from crossed-shaped grids,” Appl. Opt. 20, 1361–1366 (1981).
    [CrossRef] [PubMed]
  14. C. M. Rhoades, E. K. Damon, B. A. Munk, “Mid-infrared filters using conducting elements,” Appl. Opt. 21, 2814–2816 (1982).
    [CrossRef]
  15. D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, E. D. Wolf, “Infrared mesh filters fabricated by electron-beam lithography,” J. Vac. Sci. Technol. B 3, 268–271 (1985).
    [CrossRef]
  16. M. D. Morgan, W. E. Horne, V. Sundaram, J. C. Wolfe, S. V. Pendharkar, R. Tiberio, “Application of optical filters fabricated by masked ion beam lithography,” J. Vac. Sci. Technol. B 14, 3903–3906 (1996).
    [CrossRef]
  17. T. Sato, “Spectral emissivity of silicon,” Jpn. J. Appl. Phys. 6, 339–347 (1967).
    [CrossRef]
  18. J. D. Kraus, Antennas, 2nd ed. (McGraw-Hill, New York, 1988).
  19. S. T. Chase, R. D. Joseph, “Resonant array bandpass filters for the far infrared,” Appl. Opt. 22, 1775–1779 (1983).
    [CrossRef] [PubMed]
  20. C. R. Brewitt-Taylor, D. J. Gunton, H. D. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–731 (1981).
    [CrossRef]
  21. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985)

1996 (1)

M. D. Morgan, W. E. Horne, V. Sundaram, J. C. Wolfe, S. V. Pendharkar, R. Tiberio, “Application of optical filters fabricated by masked ion beam lithography,” J. Vac. Sci. Technol. B 14, 3903–3906 (1996).
[CrossRef]

1988 (2)

R. Mittra, C. Chan, T. Cwik, “Techniques for analyzing frequency selective surfaces—a review,” IEEE Proc. 76, 1593–1615 (1988).
[CrossRef]

K. J. Kogler, R. G. Pastor, “Infrared filters fabricated from submicron loop antenna arrays,” Appl. Opt. 27, 18–19 (1988).
[CrossRef] [PubMed]

1985 (2)

J. G. Gallagher, D. J. Brammer, “Scattering from an infinite array of periodic broken wires buried in a dielectric sheet,” Radio Sci. 20, 50–62 (1985).
[CrossRef]

D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, E. D. Wolf, “Infrared mesh filters fabricated by electron-beam lithography,” J. Vac. Sci. Technol. B 3, 268–271 (1985).
[CrossRef]

1984 (1)

C. H. Tsao, R. Mittra, “Spectral domain analysis of frequency selective surfaces comprised of periodic arrays of crossed dipoles and Jerusalem crosses,” IEEE Trans. Antennas Propag. AP-32, 478–486 (1984).
[CrossRef]

1983 (2)

J. C. Vardaxoglou, E. Parker, “Performance of two tripole arrays as frequency selective surfaces,” Electron. Lett. 19, 709–710 (1983).
[CrossRef]

S. T. Chase, R. D. Joseph, “Resonant array bandpass filters for the far infrared,” Appl. Opt. 22, 1775–1779 (1983).
[CrossRef] [PubMed]

1982 (4)

S. M. Hamdy, E. A. Parker, “Current distribution on elements of a square loop frequency selective surface,” Electron. Lett. 18, 624–626 (1982).
[CrossRef]

R. J. Langley, A. J. Drinkwater, “Improved empirical model for the Jerusalem cross,” IEE Proc. Part H 129, 1–6 (1982).

S. M. A. Hamdy, E. A. Parker, “Influence of lattice geometry on transmission of electromagnetic waves through arrays of crossed dipoles,” IEE Proc. Part H 129, 7–10 (1982).

C. M. Rhoades, E. K. Damon, B. A. Munk, “Mid-infrared filters using conducting elements,” Appl. Opt. 21, 2814–2816 (1982).
[CrossRef]

1981 (3)

1980 (1)

1979 (1)

E. L. Pelton, B. A. Munk, “Scattering from periodic arrays of crossed dipoles,” IEEE Trans. Antennas Propag. AP-27, 323–330 (1979).
[CrossRef]

1967 (2)

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967).
[CrossRef]

T. Sato, “Spectral emissivity of silicon,” Jpn. J. Appl. Phys. 6, 339–347 (1967).
[CrossRef]

Brammer, D. J.

J. G. Gallagher, D. J. Brammer, “Scattering from an infinite array of periodic broken wires buried in a dielectric sheet,” Radio Sci. 20, 50–62 (1985).
[CrossRef]

Brewitt-Taylor, C. R.

C. R. Brewitt-Taylor, D. J. Gunton, H. D. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–731 (1981).
[CrossRef]

Brouns, A. J.

D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, E. D. Wolf, “Infrared mesh filters fabricated by electron-beam lithography,” J. Vac. Sci. Technol. B 3, 268–271 (1985).
[CrossRef]

Byrne, D. M.

D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, E. D. Wolf, “Infrared mesh filters fabricated by electron-beam lithography,” J. Vac. Sci. Technol. B 3, 268–271 (1985).
[CrossRef]

Case, F. C.

D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, E. D. Wolf, “Infrared mesh filters fabricated by electron-beam lithography,” J. Vac. Sci. Technol. B 3, 268–271 (1985).
[CrossRef]

Chan, C.

R. Mittra, C. Chan, T. Cwik, “Techniques for analyzing frequency selective surfaces—a review,” IEEE Proc. 76, 1593–1615 (1988).
[CrossRef]

Chase, S. T.

Cwik, T.

R. Mittra, C. Chan, T. Cwik, “Techniques for analyzing frequency selective surfaces—a review,” IEEE Proc. 76, 1593–1615 (1988).
[CrossRef]

Damon, E. K.

Drinkwater, A. J.

R. J. Langley, A. J. Drinkwater, “Improved empirical model for the Jerusalem cross,” IEE Proc. Part H 129, 1–6 (1982).

Edewaard, D. C.

Gallagher, J. G.

J. G. Gallagher, D. J. Brammer, “Scattering from an infinite array of periodic broken wires buried in a dielectric sheet,” Radio Sci. 20, 50–62 (1985).
[CrossRef]

Gillian, P.

Gunton, D. J.

C. R. Brewitt-Taylor, D. J. Gunton, H. D. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–731 (1981).
[CrossRef]

Hamdy, S. M.

S. M. Hamdy, E. A. Parker, “Current distribution on elements of a square loop frequency selective surface,” Electron. Lett. 18, 624–626 (1982).
[CrossRef]

Hamdy, S. M. A.

S. M. A. Hamdy, E. A. Parker, “Influence of lattice geometry on transmission of electromagnetic waves through arrays of crossed dipoles,” IEE Proc. Part H 129, 7–10 (1982).

Horne, W. E.

M. D. Morgan, W. E. Horne, V. Sundaram, J. C. Wolfe, S. V. Pendharkar, R. Tiberio, “Application of optical filters fabricated by masked ion beam lithography,” J. Vac. Sci. Technol. B 14, 3903–3906 (1996).
[CrossRef]

Joseph, R. D.

Keene, J.

Kogler, K. J.

Kraus, J. D.

J. D. Kraus, Antennas, 2nd ed. (McGraw-Hill, New York, 1988).

Langley, R. J.

R. J. Langley, A. J. Drinkwater, “Improved empirical model for the Jerusalem cross,” IEE Proc. Part H 129, 1–6 (1982).

Mittra, R.

R. Mittra, C. Chan, T. Cwik, “Techniques for analyzing frequency selective surfaces—a review,” IEEE Proc. 76, 1593–1615 (1988).
[CrossRef]

C. H. Tsao, R. Mittra, “Spectral domain analysis of frequency selective surfaces comprised of periodic arrays of crossed dipoles and Jerusalem crosses,” IEEE Trans. Antennas Propag. AP-32, 478–486 (1984).
[CrossRef]

Moller, K. D.

Morgan, M. D.

M. D. Morgan, W. E. Horne, V. Sundaram, J. C. Wolfe, S. V. Pendharkar, R. Tiberio, “Application of optical filters fabricated by masked ion beam lithography,” J. Vac. Sci. Technol. B 14, 3903–3906 (1996).
[CrossRef]

Munk, B. A.

C. M. Rhoades, E. K. Damon, B. A. Munk, “Mid-infrared filters using conducting elements,” Appl. Opt. 21, 2814–2816 (1982).
[CrossRef]

E. L. Pelton, B. A. Munk, “Scattering from periodic arrays of crossed dipoles,” IEEE Trans. Antennas Propag. AP-27, 323–330 (1979).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985)

Parker, E.

J. C. Vardaxoglou, E. Parker, “Performance of two tripole arrays as frequency selective surfaces,” Electron. Lett. 19, 709–710 (1983).
[CrossRef]

Parker, E. A.

S. M. A. Hamdy, E. A. Parker, “Influence of lattice geometry on transmission of electromagnetic waves through arrays of crossed dipoles,” IEE Proc. Part H 129, 7–10 (1982).

S. M. Hamdy, E. A. Parker, “Current distribution on elements of a square loop frequency selective surface,” Electron. Lett. 18, 624–626 (1982).
[CrossRef]

Pastor, R. G.

Pelton, E. L.

E. L. Pelton, B. A. Munk, “Scattering from periodic arrays of crossed dipoles,” IEEE Trans. Antennas Propag. AP-27, 323–330 (1979).
[CrossRef]

Pendharkar, S. V.

M. D. Morgan, W. E. Horne, V. Sundaram, J. C. Wolfe, S. V. Pendharkar, R. Tiberio, “Application of optical filters fabricated by masked ion beam lithography,” J. Vac. Sci. Technol. B 14, 3903–3906 (1996).
[CrossRef]

Rees, H. D.

C. R. Brewitt-Taylor, D. J. Gunton, H. D. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–731 (1981).
[CrossRef]

Rhoades, C. M.

Richards, P. L.

Sato, T.

T. Sato, “Spectral emissivity of silicon,” Jpn. J. Appl. Phys. 6, 339–347 (1967).
[CrossRef]

Sundaram, V.

M. D. Morgan, W. E. Horne, V. Sundaram, J. C. Wolfe, S. V. Pendharkar, R. Tiberio, “Application of optical filters fabricated by masked ion beam lithography,” J. Vac. Sci. Technol. B 14, 3903–3906 (1996).
[CrossRef]

Tiberio, R.

M. D. Morgan, W. E. Horne, V. Sundaram, J. C. Wolfe, S. V. Pendharkar, R. Tiberio, “Application of optical filters fabricated by masked ion beam lithography,” J. Vac. Sci. Technol. B 14, 3903–3906 (1996).
[CrossRef]

Tiberio, R. C.

D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, E. D. Wolf, “Infrared mesh filters fabricated by electron-beam lithography,” J. Vac. Sci. Technol. B 3, 268–271 (1985).
[CrossRef]

Timusk, T.

Tomaselli, V. P.

Tsao, C. H.

C. H. Tsao, R. Mittra, “Spectral domain analysis of frequency selective surfaces comprised of periodic arrays of crossed dipoles and Jerusalem crosses,” IEEE Trans. Antennas Propag. AP-32, 478–486 (1984).
[CrossRef]

Ulrich, R.

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967).
[CrossRef]

Vardaxoglou, J. C.

J. C. Vardaxoglou, E. Parker, “Performance of two tripole arrays as frequency selective surfaces,” Electron. Lett. 19, 709–710 (1983).
[CrossRef]

Whitcomb, S. E.

Whitehead, B. L.

D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, E. D. Wolf, “Infrared mesh filters fabricated by electron-beam lithography,” J. Vac. Sci. Technol. B 3, 268–271 (1985).
[CrossRef]

Wolf, E. D.

D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, E. D. Wolf, “Infrared mesh filters fabricated by electron-beam lithography,” J. Vac. Sci. Technol. B 3, 268–271 (1985).
[CrossRef]

Wolfe, J. C.

M. D. Morgan, W. E. Horne, V. Sundaram, J. C. Wolfe, S. V. Pendharkar, R. Tiberio, “Application of optical filters fabricated by masked ion beam lithography,” J. Vac. Sci. Technol. B 14, 3903–3906 (1996).
[CrossRef]

Appl. Opt. (6)

Electron. Lett. (3)

C. R. Brewitt-Taylor, D. J. Gunton, H. D. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–731 (1981).
[CrossRef]

J. C. Vardaxoglou, E. Parker, “Performance of two tripole arrays as frequency selective surfaces,” Electron. Lett. 19, 709–710 (1983).
[CrossRef]

S. M. Hamdy, E. A. Parker, “Current distribution on elements of a square loop frequency selective surface,” Electron. Lett. 18, 624–626 (1982).
[CrossRef]

IEE Proc. Part H (2)

S. M. A. Hamdy, E. A. Parker, “Influence of lattice geometry on transmission of electromagnetic waves through arrays of crossed dipoles,” IEE Proc. Part H 129, 7–10 (1982).

R. J. Langley, A. J. Drinkwater, “Improved empirical model for the Jerusalem cross,” IEE Proc. Part H 129, 1–6 (1982).

IEEE Proc. (1)

R. Mittra, C. Chan, T. Cwik, “Techniques for analyzing frequency selective surfaces—a review,” IEEE Proc. 76, 1593–1615 (1988).
[CrossRef]

IEEE Trans. Antennas Propag. (2)

E. L. Pelton, B. A. Munk, “Scattering from periodic arrays of crossed dipoles,” IEEE Trans. Antennas Propag. AP-27, 323–330 (1979).
[CrossRef]

C. H. Tsao, R. Mittra, “Spectral domain analysis of frequency selective surfaces comprised of periodic arrays of crossed dipoles and Jerusalem crosses,” IEEE Trans. Antennas Propag. AP-32, 478–486 (1984).
[CrossRef]

Infrared Phys. (1)

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967).
[CrossRef]

J. Vac. Sci. Technol. B (2)

D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, E. D. Wolf, “Infrared mesh filters fabricated by electron-beam lithography,” J. Vac. Sci. Technol. B 3, 268–271 (1985).
[CrossRef]

M. D. Morgan, W. E. Horne, V. Sundaram, J. C. Wolfe, S. V. Pendharkar, R. Tiberio, “Application of optical filters fabricated by masked ion beam lithography,” J. Vac. Sci. Technol. B 14, 3903–3906 (1996).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Sato, “Spectral emissivity of silicon,” Jpn. J. Appl. Phys. 6, 339–347 (1967).
[CrossRef]

Radio Sci. (1)

J. G. Gallagher, D. J. Brammer, “Scattering from an infinite array of periodic broken wires buried in a dielectric sheet,” Radio Sci. 20, 50–62 (1985).
[CrossRef]

Other (2)

J. D. Kraus, Antennas, 2nd ed. (McGraw-Hill, New York, 1988).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Spectral (a) transmittance and (b) reflectance of the FSS and of the substrate alone for array type (air–Si, coupled, 0.8).

Fig. 2
Fig. 2

Spectral transmittance and reflectance of the FSS normalized to the transmittance and reflectance, respectively, of the bare substrate.

Fig. 3
Fig. 3

Scanning electron micrographs of (a) an isolated dipole array and (b) a coupled dipole array.

Fig. 4
Fig. 4

Comparison between isolated and coupled dipole array transmittance response.

Fig. 5
Fig. 5

Configurations of the FSS fabricated: case 1, dipole array supported by a thin layer (2500 Å) of SiO2 on a Si substrate; case 2, dipole array supported by a Si substrate; case 3, dipole array buried into the Si substrate.

Fig. 6
Fig. 6

Ratio of the calculated wavelength of resonance with respect to the measured wavelength of resonance with Eq. (3) and Eq. (4), respectively, as a function of measured wavelength of resonance.

Fig. 7
Fig. 7

Spectral transmittance of a dipole array on a SiO2 layer [type (air–SiO2), coupled, 1.6)], on a Si substrate [type (air–Si, coupled, 1.6)], and buried in Si [type (Si–Si, coupled, 1.6)].

Tables (2)

Tables Icon

Table 1 Geometrical Dimensions of the Arrays Studied

Tables Icon

Table 2 Theoretical and Experimental Values of the Resonant Wavelength for the Arrays Fabricated

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Tˆ=TFSS/Tsubstrate,
Rˆ=RFSS/Rsubstrate.
λ0,res=2Lx.
λ0,res=2.1Lx1+Ly/2Lx.
λres=λ0,resneff,
neff=n12+n22/21/2.

Metrics