Abstract

Germanium-coated metal (silver, gold, and copper) hollow waveguides for CO2 laser energy delivery have been fabricated by electron-beam evaporation and plating techniques in which an acid-soluble glass mandrel with small surface roughness was used. The transmission characteristics of Ge-coated metal hollow waveguides were studied. Ge-coated Ag hollow waveguides showed smaller loss, 0.2 dBm, for CO2 laser light than Ge-coated Au and Cu waveguides. The transmission characteristics of Ge-coated Ag hollow waveguides were measured in relation to a core diameter and a bending radius.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Harrington, C. Gregory, “Hollow sapphire fibers for the delivery of CO2 laser energy,” Opt. Lett. 15, 541–543 (1990).
    [CrossRef] [PubMed]
  2. T. Abel, J. Hirsch, A. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt. Lett. 19, 1034–1036 (1994).
    [CrossRef] [PubMed]
  3. M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
    [CrossRef]
  4. M. Miyagi, Y. Shimada, A. Hongo, K. Sakamoto, S. Nishida, “Fabrication and transmission properties of electrically deposited germanium-coated waveguides for infrared radiation,” J. Appl. Phys. 60, 454–456 (1986).
    [CrossRef]
  5. Y. Matsuura, M. Miyagi, A. Hongo, “Loss reduction of dielectric-coated metallic hollow waveguides for CO2 laser light transmission,” Opt. Laser Technol. 22, 141–145 (1990).
    [CrossRef]
  6. A. Hongo, K. Morosawa, T. Shiota, Y. Matsuura, M. Miyagi, “Transmission characteristics of germanium thin-film-coated metallic hollow waveguides for high-powered CO2 laser light,” IEEE J. Quantum Electron. 26, 1510–1515 (1990).
    [CrossRef]
  7. Y. Matsuura, M. Miyagi, “Fabrication of low-loss zinc-selenide coated silver hollow waveguides for CO2 laser light,” J. Appl. Phys. 68, 5463–5466 (1990).
    [CrossRef]
  8. Y. Matsuura, M. Miyagi, “Bending losses and beam profiles of zinc selenide–coated silver waveguides for carbon dioxide laser light,” Appl. Opt. 31, 6441–6445 (1992).
    [CrossRef] [PubMed]
  9. Y. Matsuura, M. Miyagi, “Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–6601 (1993).
    [CrossRef] [PubMed]
  10. T. Watanabe, H. Hiraga, Y. Abe, M. Miyagi, “Fabrication of silver hollow nickel waveguides with multiple inner dielectric layers by the outer-coating method,” Opt. Lett. 21, 1670–1672 (1996).
    [CrossRef] [PubMed]
  11. Y. Kato, M. Ozawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron Lett. 31, 31–32 (1995).
    [CrossRef]
  12. Y. Matsuura, J. A. Harrington, “Hollow glass waveguides with CVD-deposited metal and dielectric-coatings,” in Biomedical Fiber Optics, J. A. Harrington, A. Katzir, eds., Proc. SPIE2677, 64–71 (1996).
    [CrossRef]
  13. Y. Wang, A. Hongo, T. Shimomura, D. Miura, M. Miyagi, “Thickness and uniformity of fluorocarbon polymer film dynamically coated inside silver hollow glass waveguides,” Appl. Opt. 36, 2886–2892 (1997).
    [CrossRef] [PubMed]
  14. M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
    [CrossRef]
  15. K. Takatani, Y. Matsuura, M. Miyagi, “Theoretical and experimental investigations of loss behavior in the infrared in quartz hollow waveguides with rough inner surfaces,” Appl. Opt. 34, 4352–4357 (1995).
    [CrossRef] [PubMed]
  16. N. Croitoru, J. Dror, I. Gannot, “Characterization of hollow fibers for the transmission of infrared radiation,” Appl. Opt. 29, 1805–1809 (1990).
    [CrossRef] [PubMed]

1997

1996

1995

K. Takatani, Y. Matsuura, M. Miyagi, “Theoretical and experimental investigations of loss behavior in the infrared in quartz hollow waveguides with rough inner surfaces,” Appl. Opt. 34, 4352–4357 (1995).
[CrossRef] [PubMed]

Y. Kato, M. Ozawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron Lett. 31, 31–32 (1995).
[CrossRef]

1994

1993

1992

1990

J. A. Harrington, C. Gregory, “Hollow sapphire fibers for the delivery of CO2 laser energy,” Opt. Lett. 15, 541–543 (1990).
[CrossRef] [PubMed]

N. Croitoru, J. Dror, I. Gannot, “Characterization of hollow fibers for the transmission of infrared radiation,” Appl. Opt. 29, 1805–1809 (1990).
[CrossRef] [PubMed]

Y. Matsuura, M. Miyagi, A. Hongo, “Loss reduction of dielectric-coated metallic hollow waveguides for CO2 laser light transmission,” Opt. Laser Technol. 22, 141–145 (1990).
[CrossRef]

A. Hongo, K. Morosawa, T. Shiota, Y. Matsuura, M. Miyagi, “Transmission characteristics of germanium thin-film-coated metallic hollow waveguides for high-powered CO2 laser light,” IEEE J. Quantum Electron. 26, 1510–1515 (1990).
[CrossRef]

Y. Matsuura, M. Miyagi, “Fabrication of low-loss zinc-selenide coated silver hollow waveguides for CO2 laser light,” J. Appl. Phys. 68, 5463–5466 (1990).
[CrossRef]

1986

M. Miyagi, Y. Shimada, A. Hongo, K. Sakamoto, S. Nishida, “Fabrication and transmission properties of electrically deposited germanium-coated waveguides for infrared radiation,” J. Appl. Phys. 60, 454–456 (1986).
[CrossRef]

1984

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

1983

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[CrossRef]

Abe, S.

Y. Kato, M. Ozawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron Lett. 31, 31–32 (1995).
[CrossRef]

Abe, Y.

Abel, T.

Aizawa, M.

Y. Kato, M. Ozawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron Lett. 31, 31–32 (1995).
[CrossRef]

Aizawa, Y.

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[CrossRef]

Croitoru, N.

Dror, J.

Gannot, I.

Gregory, C.

Harrington, A.

Harrington, J. A.

J. A. Harrington, C. Gregory, “Hollow sapphire fibers for the delivery of CO2 laser energy,” Opt. Lett. 15, 541–543 (1990).
[CrossRef] [PubMed]

Y. Matsuura, J. A. Harrington, “Hollow glass waveguides with CVD-deposited metal and dielectric-coatings,” in Biomedical Fiber Optics, J. A. Harrington, A. Katzir, eds., Proc. SPIE2677, 64–71 (1996).
[CrossRef]

Hiraga, H.

Hirsch, J.

Hongo, A.

Y. Wang, A. Hongo, T. Shimomura, D. Miura, M. Miyagi, “Thickness and uniformity of fluorocarbon polymer film dynamically coated inside silver hollow glass waveguides,” Appl. Opt. 36, 2886–2892 (1997).
[CrossRef] [PubMed]

Y. Matsuura, M. Miyagi, A. Hongo, “Loss reduction of dielectric-coated metallic hollow waveguides for CO2 laser light transmission,” Opt. Laser Technol. 22, 141–145 (1990).
[CrossRef]

A. Hongo, K. Morosawa, T. Shiota, Y. Matsuura, M. Miyagi, “Transmission characteristics of germanium thin-film-coated metallic hollow waveguides for high-powered CO2 laser light,” IEEE J. Quantum Electron. 26, 1510–1515 (1990).
[CrossRef]

M. Miyagi, Y. Shimada, A. Hongo, K. Sakamoto, S. Nishida, “Fabrication and transmission properties of electrically deposited germanium-coated waveguides for infrared radiation,” J. Appl. Phys. 60, 454–456 (1986).
[CrossRef]

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[CrossRef]

Kato, Y.

Y. Kato, M. Ozawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron Lett. 31, 31–32 (1995).
[CrossRef]

Kawakami, S.

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[CrossRef]

Matsuura, Y.

K. Takatani, Y. Matsuura, M. Miyagi, “Theoretical and experimental investigations of loss behavior in the infrared in quartz hollow waveguides with rough inner surfaces,” Appl. Opt. 34, 4352–4357 (1995).
[CrossRef] [PubMed]

Y. Matsuura, M. Miyagi, “Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–6601 (1993).
[CrossRef] [PubMed]

Y. Matsuura, M. Miyagi, “Bending losses and beam profiles of zinc selenide–coated silver waveguides for carbon dioxide laser light,” Appl. Opt. 31, 6441–6445 (1992).
[CrossRef] [PubMed]

A. Hongo, K. Morosawa, T. Shiota, Y. Matsuura, M. Miyagi, “Transmission characteristics of germanium thin-film-coated metallic hollow waveguides for high-powered CO2 laser light,” IEEE J. Quantum Electron. 26, 1510–1515 (1990).
[CrossRef]

Y. Matsuura, M. Miyagi, “Fabrication of low-loss zinc-selenide coated silver hollow waveguides for CO2 laser light,” J. Appl. Phys. 68, 5463–5466 (1990).
[CrossRef]

Y. Matsuura, M. Miyagi, A. Hongo, “Loss reduction of dielectric-coated metallic hollow waveguides for CO2 laser light transmission,” Opt. Laser Technol. 22, 141–145 (1990).
[CrossRef]

Y. Matsuura, J. A. Harrington, “Hollow glass waveguides with CVD-deposited metal and dielectric-coatings,” in Biomedical Fiber Optics, J. A. Harrington, A. Katzir, eds., Proc. SPIE2677, 64–71 (1996).
[CrossRef]

Miura, D.

Miyagi, M.

Y. Wang, A. Hongo, T. Shimomura, D. Miura, M. Miyagi, “Thickness and uniformity of fluorocarbon polymer film dynamically coated inside silver hollow glass waveguides,” Appl. Opt. 36, 2886–2892 (1997).
[CrossRef] [PubMed]

T. Watanabe, H. Hiraga, Y. Abe, M. Miyagi, “Fabrication of silver hollow nickel waveguides with multiple inner dielectric layers by the outer-coating method,” Opt. Lett. 21, 1670–1672 (1996).
[CrossRef] [PubMed]

K. Takatani, Y. Matsuura, M. Miyagi, “Theoretical and experimental investigations of loss behavior in the infrared in quartz hollow waveguides with rough inner surfaces,” Appl. Opt. 34, 4352–4357 (1995).
[CrossRef] [PubMed]

Y. Kato, M. Ozawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron Lett. 31, 31–32 (1995).
[CrossRef]

Y. Matsuura, M. Miyagi, “Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–6601 (1993).
[CrossRef] [PubMed]

Y. Matsuura, M. Miyagi, “Bending losses and beam profiles of zinc selenide–coated silver waveguides for carbon dioxide laser light,” Appl. Opt. 31, 6441–6445 (1992).
[CrossRef] [PubMed]

A. Hongo, K. Morosawa, T. Shiota, Y. Matsuura, M. Miyagi, “Transmission characteristics of germanium thin-film-coated metallic hollow waveguides for high-powered CO2 laser light,” IEEE J. Quantum Electron. 26, 1510–1515 (1990).
[CrossRef]

Y. Matsuura, M. Miyagi, “Fabrication of low-loss zinc-selenide coated silver hollow waveguides for CO2 laser light,” J. Appl. Phys. 68, 5463–5466 (1990).
[CrossRef]

Y. Matsuura, M. Miyagi, A. Hongo, “Loss reduction of dielectric-coated metallic hollow waveguides for CO2 laser light transmission,” Opt. Laser Technol. 22, 141–145 (1990).
[CrossRef]

M. Miyagi, Y. Shimada, A. Hongo, K. Sakamoto, S. Nishida, “Fabrication and transmission properties of electrically deposited germanium-coated waveguides for infrared radiation,” J. Appl. Phys. 60, 454–456 (1986).
[CrossRef]

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[CrossRef]

Morosawa, K.

A. Hongo, K. Morosawa, T. Shiota, Y. Matsuura, M. Miyagi, “Transmission characteristics of germanium thin-film-coated metallic hollow waveguides for high-powered CO2 laser light,” IEEE J. Quantum Electron. 26, 1510–1515 (1990).
[CrossRef]

Nishida, S.

M. Miyagi, Y. Shimada, A. Hongo, K. Sakamoto, S. Nishida, “Fabrication and transmission properties of electrically deposited germanium-coated waveguides for infrared radiation,” J. Appl. Phys. 60, 454–456 (1986).
[CrossRef]

Onodera, S.

Y. Kato, M. Ozawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron Lett. 31, 31–32 (1995).
[CrossRef]

Ozawa, M.

Y. Kato, M. Ozawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron Lett. 31, 31–32 (1995).
[CrossRef]

Sakamoto, K.

M. Miyagi, Y. Shimada, A. Hongo, K. Sakamoto, S. Nishida, “Fabrication and transmission properties of electrically deposited germanium-coated waveguides for infrared radiation,” J. Appl. Phys. 60, 454–456 (1986).
[CrossRef]

Shimada, Y.

M. Miyagi, Y. Shimada, A. Hongo, K. Sakamoto, S. Nishida, “Fabrication and transmission properties of electrically deposited germanium-coated waveguides for infrared radiation,” J. Appl. Phys. 60, 454–456 (1986).
[CrossRef]

Shimomura, T.

Shiota, T.

A. Hongo, K. Morosawa, T. Shiota, Y. Matsuura, M. Miyagi, “Transmission characteristics of germanium thin-film-coated metallic hollow waveguides for high-powered CO2 laser light,” IEEE J. Quantum Electron. 26, 1510–1515 (1990).
[CrossRef]

Takatani, K.

Wang, Y.

Watanabe, T.

Appl. Opt.

Appl. Phys. Lett.

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[CrossRef]

Electron Lett.

Y. Kato, M. Ozawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron Lett. 31, 31–32 (1995).
[CrossRef]

IEEE J. Quantum Electron.

A. Hongo, K. Morosawa, T. Shiota, Y. Matsuura, M. Miyagi, “Transmission characteristics of germanium thin-film-coated metallic hollow waveguides for high-powered CO2 laser light,” IEEE J. Quantum Electron. 26, 1510–1515 (1990).
[CrossRef]

J. Appl. Phys.

Y. Matsuura, M. Miyagi, “Fabrication of low-loss zinc-selenide coated silver hollow waveguides for CO2 laser light,” J. Appl. Phys. 68, 5463–5466 (1990).
[CrossRef]

M. Miyagi, Y. Shimada, A. Hongo, K. Sakamoto, S. Nishida, “Fabrication and transmission properties of electrically deposited germanium-coated waveguides for infrared radiation,” J. Appl. Phys. 60, 454–456 (1986).
[CrossRef]

J. Lightwave Technol.

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

Opt. Laser Technol.

Y. Matsuura, M. Miyagi, A. Hongo, “Loss reduction of dielectric-coated metallic hollow waveguides for CO2 laser light transmission,” Opt. Laser Technol. 22, 141–145 (1990).
[CrossRef]

Opt. Lett.

Other

Y. Matsuura, J. A. Harrington, “Hollow glass waveguides with CVD-deposited metal and dielectric-coatings,” in Biomedical Fiber Optics, J. A. Harrington, A. Katzir, eds., Proc. SPIE2677, 64–71 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Reflectance of Ge thin films of various thicknesses upon metal (Ag, Au, Cu) substrates.

Fig. 2
Fig. 2

Schematic of the film-deposition system for fabrication of hollow waveguides.

Fig. 3
Fig. 3

Processing steps for fabrication of a hollow waveguide.

Fig. 4
Fig. 4

Experimental setup for measurements of CO2 laser power transmission. (1 in. = 2.54 cm).

Fig. 5
Fig. 5

Transmission attenuation of a Ge–Ag hollow waveguide versus thickness of the Ge layer for two ZnSe lenses, where f is the focal length.

Fig. 6
Fig. 6

Bending losses in Ge–Ag hollow waveguides with inner diameters d as shown.

Fig. 7
Fig. 7

Transmission attenuation of a Ge–Ag hollow waveguide as a function of inner diameter.

Fig. 8
Fig. 8

Transmission attenuation of a Ge–Ag hollow waveguide with an average inner diameter of 0.65 mm as a function of the standard deviation of inner-diameter fluctuation.

Fig. 9
Fig. 9

Transmission attenuation of a Ge–Au hollow waveguide versus thickness of the Ge layer for two ZnSe lenses, where f is the focal length.

Fig. 10
Fig. 10

Transmission attenuation of a Ge–Cu hollow waveguide versus thickness of the Ge layer for two ZnSe lenses, where f is the focal length.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

α=U0/2πλ2/a3n/n2+κ2metalFfilm,
Tz=0π/2 I0θexp-2αθzsinθdθ0π/2 I0θsinθdθ,
2αθ=1-Rθ/2a cot θ.
Rθ=RTEθ+RTMθ/2,
RTE=R0TE exp-4πnσ cos θ/λ2,
RTM=R0TM exp-4πnσ cos θ/λ2,
2αθ=2α0θ+2αrθ,
α0θ=n0k0a sinθ/2π2λ2/a3Reñ2+1/2ñ2-11/2.
αrθ=n0κ0σ2 sinθ/2a cotθπn0κ0/S1/2, n0κ0S  1,
αrθ=πn0κ03σ2 sinθ/4a cotθS, n0κ0S  1,
d=λ/2πnd2-1tan-1nd/nd2-11/4,

Metrics