Abstract

The principles of an entirely new method to demodulate Doppler signals in Doppler global velocimetry (DGV) are discussed. The method makes use of coherent detection and streak imaging to record both temporal and spatial information on a single image. The method retains the simplicity of the basic DGV technique yet increases its applicability to subsonic flow regimes. The combination of a straightforward optical configuration and the ability to collect large data sets efficiently make this technique particularly useful in high-cost experimental facilities such as wind-tunnel testing where large quantities of data must be collected in a relatively short time period.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Adrian, “Particle-imaging techniques for experimental fluid dynamics,” Annu. Rev. Fluid Mech. 23, 261–304 (1991).
    [CrossRef]
  2. M. P. Arroyo, C. A. Greated, “Stereoscopic particle image velocimetry,” Meas. Sci. Technol. 2, 1181–1186 (1991).
    [CrossRef]
  3. J. M. Coupland, N. A. Halliwell, “Particle image velocimetry: three-dimensional fluid velocity measurements using holographic recording and optical correlation,” Appl. Opt. 31, 1005–1007 (1992).
    [CrossRef] [PubMed]
  4. D. H. Barnhart, R. J. Adrian, G. C. Papen, “Phase conjugate holographic system for high-resolution particle image velocimetry,” Appl. Opt. 33, 7159–7170 (1994).
    [CrossRef] [PubMed]
  5. H. Komine, S. J. Brosnan, “Real time Doppler global velocimetry,” paper AIAA-91-0337, presented at the Twenty-Ninth Aerospace Sciences Meeting, Reno, Nevada, 7–10 January 1991 (American Institute of Aeronautics and Astronautics, New York, 1991).
  6. J. F. Meyers, “Development of Doppler global velocimetry as a flow diagnostics tool,” Meas. Sci. Technol. 6, 769–783 (1995).
    [CrossRef]
  7. D. R. McClusky, T. S. Laursen, J. J. Rasmussen, B. Stenum, “Evolution of vortical flow fields by real time PIV system,” in Fluids Engineering and Laser Anemometry Conference, Pub. 207 (American Society of Mechanical Engineers, New York, 1995), pp. 313–318.
  8. R. L. McKenzie, “Measurement capabilities of planar Doppler velocimetry using pulsed lasers,” Appl. Opt. 35, 948–964 (1996).
    [CrossRef] [PubMed]
  9. I. Roehle, R. Schodl, “Evaluation of the accuracy of the Doppler global technique,” in Optical Methods and Data Processing in Heat and Fluid Flow (Institute of Mechanical Engineers, London, U.K., 1994), pp. 121–136.
  10. Y. Yeh, H. Cummins, “Localised fluid measurements with a HeNe laser spectrometer,” Appl. Phys. Lett. 4, 176–178 (1964).
    [CrossRef]
  11. J. M. Intrieri, A. J. Bedard, R. M. Herdesty, “Details of colliding thunderstorm outflows as observed by Doppler lidar,” J. Atmos. Sci. 47, 1081–1098 (1990).
    [CrossRef]
  12. J. E. Field, “High speed photography: techniques and applications,” Opt. Eng. 21, 709–717 (1982).
    [CrossRef]

1996 (1)

1995 (1)

J. F. Meyers, “Development of Doppler global velocimetry as a flow diagnostics tool,” Meas. Sci. Technol. 6, 769–783 (1995).
[CrossRef]

1994 (1)

1992 (1)

1991 (2)

R. J. Adrian, “Particle-imaging techniques for experimental fluid dynamics,” Annu. Rev. Fluid Mech. 23, 261–304 (1991).
[CrossRef]

M. P. Arroyo, C. A. Greated, “Stereoscopic particle image velocimetry,” Meas. Sci. Technol. 2, 1181–1186 (1991).
[CrossRef]

1990 (1)

J. M. Intrieri, A. J. Bedard, R. M. Herdesty, “Details of colliding thunderstorm outflows as observed by Doppler lidar,” J. Atmos. Sci. 47, 1081–1098 (1990).
[CrossRef]

1982 (1)

J. E. Field, “High speed photography: techniques and applications,” Opt. Eng. 21, 709–717 (1982).
[CrossRef]

1964 (1)

Y. Yeh, H. Cummins, “Localised fluid measurements with a HeNe laser spectrometer,” Appl. Phys. Lett. 4, 176–178 (1964).
[CrossRef]

Adrian, R. J.

Arroyo, M. P.

M. P. Arroyo, C. A. Greated, “Stereoscopic particle image velocimetry,” Meas. Sci. Technol. 2, 1181–1186 (1991).
[CrossRef]

Barnhart, D. H.

Bedard, A. J.

J. M. Intrieri, A. J. Bedard, R. M. Herdesty, “Details of colliding thunderstorm outflows as observed by Doppler lidar,” J. Atmos. Sci. 47, 1081–1098 (1990).
[CrossRef]

Brosnan, S. J.

H. Komine, S. J. Brosnan, “Real time Doppler global velocimetry,” paper AIAA-91-0337, presented at the Twenty-Ninth Aerospace Sciences Meeting, Reno, Nevada, 7–10 January 1991 (American Institute of Aeronautics and Astronautics, New York, 1991).

Coupland, J. M.

Cummins, H.

Y. Yeh, H. Cummins, “Localised fluid measurements with a HeNe laser spectrometer,” Appl. Phys. Lett. 4, 176–178 (1964).
[CrossRef]

Field, J. E.

J. E. Field, “High speed photography: techniques and applications,” Opt. Eng. 21, 709–717 (1982).
[CrossRef]

Greated, C. A.

M. P. Arroyo, C. A. Greated, “Stereoscopic particle image velocimetry,” Meas. Sci. Technol. 2, 1181–1186 (1991).
[CrossRef]

Halliwell, N. A.

Herdesty, R. M.

J. M. Intrieri, A. J. Bedard, R. M. Herdesty, “Details of colliding thunderstorm outflows as observed by Doppler lidar,” J. Atmos. Sci. 47, 1081–1098 (1990).
[CrossRef]

Intrieri, J. M.

J. M. Intrieri, A. J. Bedard, R. M. Herdesty, “Details of colliding thunderstorm outflows as observed by Doppler lidar,” J. Atmos. Sci. 47, 1081–1098 (1990).
[CrossRef]

Komine, H.

H. Komine, S. J. Brosnan, “Real time Doppler global velocimetry,” paper AIAA-91-0337, presented at the Twenty-Ninth Aerospace Sciences Meeting, Reno, Nevada, 7–10 January 1991 (American Institute of Aeronautics and Astronautics, New York, 1991).

Laursen, T. S.

D. R. McClusky, T. S. Laursen, J. J. Rasmussen, B. Stenum, “Evolution of vortical flow fields by real time PIV system,” in Fluids Engineering and Laser Anemometry Conference, Pub. 207 (American Society of Mechanical Engineers, New York, 1995), pp. 313–318.

McClusky, D. R.

D. R. McClusky, T. S. Laursen, J. J. Rasmussen, B. Stenum, “Evolution of vortical flow fields by real time PIV system,” in Fluids Engineering and Laser Anemometry Conference, Pub. 207 (American Society of Mechanical Engineers, New York, 1995), pp. 313–318.

McKenzie, R. L.

Meyers, J. F.

J. F. Meyers, “Development of Doppler global velocimetry as a flow diagnostics tool,” Meas. Sci. Technol. 6, 769–783 (1995).
[CrossRef]

Papen, G. C.

Rasmussen, J. J.

D. R. McClusky, T. S. Laursen, J. J. Rasmussen, B. Stenum, “Evolution of vortical flow fields by real time PIV system,” in Fluids Engineering and Laser Anemometry Conference, Pub. 207 (American Society of Mechanical Engineers, New York, 1995), pp. 313–318.

Roehle, I.

I. Roehle, R. Schodl, “Evaluation of the accuracy of the Doppler global technique,” in Optical Methods and Data Processing in Heat and Fluid Flow (Institute of Mechanical Engineers, London, U.K., 1994), pp. 121–136.

Schodl, R.

I. Roehle, R. Schodl, “Evaluation of the accuracy of the Doppler global technique,” in Optical Methods and Data Processing in Heat and Fluid Flow (Institute of Mechanical Engineers, London, U.K., 1994), pp. 121–136.

Stenum, B.

D. R. McClusky, T. S. Laursen, J. J. Rasmussen, B. Stenum, “Evolution of vortical flow fields by real time PIV system,” in Fluids Engineering and Laser Anemometry Conference, Pub. 207 (American Society of Mechanical Engineers, New York, 1995), pp. 313–318.

Yeh, Y.

Y. Yeh, H. Cummins, “Localised fluid measurements with a HeNe laser spectrometer,” Appl. Phys. Lett. 4, 176–178 (1964).
[CrossRef]

Annu. Rev. Fluid Mech. (1)

R. J. Adrian, “Particle-imaging techniques for experimental fluid dynamics,” Annu. Rev. Fluid Mech. 23, 261–304 (1991).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

Y. Yeh, H. Cummins, “Localised fluid measurements with a HeNe laser spectrometer,” Appl. Phys. Lett. 4, 176–178 (1964).
[CrossRef]

J. Atmos. Sci. (1)

J. M. Intrieri, A. J. Bedard, R. M. Herdesty, “Details of colliding thunderstorm outflows as observed by Doppler lidar,” J. Atmos. Sci. 47, 1081–1098 (1990).
[CrossRef]

Meas. Sci. Technol. (2)

J. F. Meyers, “Development of Doppler global velocimetry as a flow diagnostics tool,” Meas. Sci. Technol. 6, 769–783 (1995).
[CrossRef]

M. P. Arroyo, C. A. Greated, “Stereoscopic particle image velocimetry,” Meas. Sci. Technol. 2, 1181–1186 (1991).
[CrossRef]

Opt. Eng. (1)

J. E. Field, “High speed photography: techniques and applications,” Opt. Eng. 21, 709–717 (1982).
[CrossRef]

Other (3)

D. R. McClusky, T. S. Laursen, J. J. Rasmussen, B. Stenum, “Evolution of vortical flow fields by real time PIV system,” in Fluids Engineering and Laser Anemometry Conference, Pub. 207 (American Society of Mechanical Engineers, New York, 1995), pp. 313–318.

I. Roehle, R. Schodl, “Evaluation of the accuracy of the Doppler global technique,” in Optical Methods and Data Processing in Heat and Fluid Flow (Institute of Mechanical Engineers, London, U.K., 1994), pp. 121–136.

H. Komine, S. J. Brosnan, “Real time Doppler global velocimetry,” paper AIAA-91-0337, presented at the Twenty-Ninth Aerospace Sciences Meeting, Reno, Nevada, 7–10 January 1991 (American Institute of Aeronautics and Astronautics, New York, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Optical configuration.

Fig. 2
Fig. 2

Streak camera.

Fig. 3
Fig. 3

Schematic of streak image.

Fig. 4
Fig. 4

Experimental configuration.

Fig. 5
Fig. 5

Geometry of the spinning disk.

Fig. 6
Fig. 6

Streak image.

Fig. 7
Fig. 7

Line power spectra (disk).

Fig. 8
Fig. 8

Measured (crosses) and theoretical (solid line) velocity.

Fig. 9
Fig. 9

Line power spectra (fluid).

Fig. 10
Fig. 10

Measured fluid velocity.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δν=nkˆs-kˆi·Vλ,
rs=2fλ1+Mdm,
dm>2fλ1+MP.
Vi=2ωf1+M,
ω=PΔνf1+M.
Vm>Δνλ2.
Vm>V,
Δν=kˆs-kˆi·ω×rλ=yω2λ.

Metrics