Abstract

We compare two angular regimes for the measurement of changes in the real refractive index of bulk fluid analytes. The measurements are based on the use of the Kretschmann–Raether configuration to sense a change in reflectivity with index. Specifically, we numerically simulate the relative sensitivities of the total internal reflection (TIR) and the surface-plasmon resonance (SPR) regimes. For a fixed-angle apparatus, the method that gives the greatest change in reflectivity varies with metal film thickness. For films thicker than the skin depth, the SPR regime is the most sensitive to index changes. For thinner films, however, the TIR angle is then dominant, with increases in sensitivity on the order of 75% for 10-nm gold or silver media.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Jenkins, H. White, Fundamentals of Optics, 4th ed. (McGraw-Hill, New York, 1976), p. 27.
  2. D. Tentori, C. L. Famozo, “High-accuracy critical angle refractometry,” Opt. Eng. 32, 593–601 (1993).
    [CrossRef]
  3. H. Raether, “Surface plasma oscillations and their applications,” in Physics of Thin Films, G. Hass, M. Francombe, R. Hoffman, eds. (Academic, New York, 1977), Vol. 9, Chap. 3.
  4. C. Nylander, B. Liedberg, T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982/83).
    [CrossRef]
  5. B. Liedberg, C. Nylander, I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
    [CrossRef]
  6. P. Daniels, J. Deacon, M. Eddowes, D. Pedley, “Surface plasmon resonance applied to immunosensing,” Sens. Actuators 15, 11–18 (1988).
    [CrossRef]
  7. K. Matsubara, S. Kawata, S. Minami, “Optical chemical sensor based on surface plasmon measurement,” Appl. Opt. 27, 1160–1163 (1988).
    [CrossRef] [PubMed]
  8. L. Zhang, D. Uttamchandani, “Optical chemical sensing using surface plasmon resonance,” Electron. Lett. 24, 1469–1470 (1988).
    [CrossRef]
  9. G. J. Sprokel, J. D. Swalen, “The attenuated total reflection method,” in Handbook of Optical Constants of Solids, E. Palik ed. (Academic, New York, 1991), Chap. 4.
  10. K. Welford, “Surface plasmon-polaritons and their uses,” Opt. Quantum Electron. 23, 1–27 (1991).
    [CrossRef]
  11. N. Peyghambarian, S. Koch, A. Mysyrowicz, Introduction to Semiconductor Optics (Prentice Hall, Englewood Cliffs, N.J., 1993), Sec. 3.6.
  12. M. Mansuripur, “Analysis of multilayer thin-film structures containing magneto-optic and anisotropic media at oblique incidence using 2 × 2 matrices,” J. Appl. Phys. 67, 6466–6475 (1990).
    [CrossRef]
  13. A. E. Craig, G. A. Olson, D. Sarid, “Experimental observation of the long-range surface-plasmon polariton,” Opt. Lett. 8, 380–382 (1983).
    [CrossRef] [PubMed]
  14. D. R. Lide, CRC Handbook of Chemistry and Physics, 77th ed. (CRC Press, Boca Raton Fla., 1996), pp. 12–126.

1993 (1)

D. Tentori, C. L. Famozo, “High-accuracy critical angle refractometry,” Opt. Eng. 32, 593–601 (1993).
[CrossRef]

1991 (1)

K. Welford, “Surface plasmon-polaritons and their uses,” Opt. Quantum Electron. 23, 1–27 (1991).
[CrossRef]

1990 (1)

M. Mansuripur, “Analysis of multilayer thin-film structures containing magneto-optic and anisotropic media at oblique incidence using 2 × 2 matrices,” J. Appl. Phys. 67, 6466–6475 (1990).
[CrossRef]

1988 (3)

K. Matsubara, S. Kawata, S. Minami, “Optical chemical sensor based on surface plasmon measurement,” Appl. Opt. 27, 1160–1163 (1988).
[CrossRef] [PubMed]

P. Daniels, J. Deacon, M. Eddowes, D. Pedley, “Surface plasmon resonance applied to immunosensing,” Sens. Actuators 15, 11–18 (1988).
[CrossRef]

L. Zhang, D. Uttamchandani, “Optical chemical sensing using surface plasmon resonance,” Electron. Lett. 24, 1469–1470 (1988).
[CrossRef]

1983 (2)

B. Liedberg, C. Nylander, I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

A. E. Craig, G. A. Olson, D. Sarid, “Experimental observation of the long-range surface-plasmon polariton,” Opt. Lett. 8, 380–382 (1983).
[CrossRef] [PubMed]

Craig, A. E.

Daniels, P.

P. Daniels, J. Deacon, M. Eddowes, D. Pedley, “Surface plasmon resonance applied to immunosensing,” Sens. Actuators 15, 11–18 (1988).
[CrossRef]

Deacon, J.

P. Daniels, J. Deacon, M. Eddowes, D. Pedley, “Surface plasmon resonance applied to immunosensing,” Sens. Actuators 15, 11–18 (1988).
[CrossRef]

Eddowes, M.

P. Daniels, J. Deacon, M. Eddowes, D. Pedley, “Surface plasmon resonance applied to immunosensing,” Sens. Actuators 15, 11–18 (1988).
[CrossRef]

Famozo, C. L.

D. Tentori, C. L. Famozo, “High-accuracy critical angle refractometry,” Opt. Eng. 32, 593–601 (1993).
[CrossRef]

Jenkins, F.

F. Jenkins, H. White, Fundamentals of Optics, 4th ed. (McGraw-Hill, New York, 1976), p. 27.

Kawata, S.

Koch, S.

N. Peyghambarian, S. Koch, A. Mysyrowicz, Introduction to Semiconductor Optics (Prentice Hall, Englewood Cliffs, N.J., 1993), Sec. 3.6.

Lide, D. R.

D. R. Lide, CRC Handbook of Chemistry and Physics, 77th ed. (CRC Press, Boca Raton Fla., 1996), pp. 12–126.

Liedberg, B.

B. Liedberg, C. Nylander, I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

C. Nylander, B. Liedberg, T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982/83).
[CrossRef]

Lind, T.

C. Nylander, B. Liedberg, T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982/83).
[CrossRef]

Lundstrom, I.

B. Liedberg, C. Nylander, I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

Mansuripur, M.

M. Mansuripur, “Analysis of multilayer thin-film structures containing magneto-optic and anisotropic media at oblique incidence using 2 × 2 matrices,” J. Appl. Phys. 67, 6466–6475 (1990).
[CrossRef]

Matsubara, K.

Minami, S.

Mysyrowicz, A.

N. Peyghambarian, S. Koch, A. Mysyrowicz, Introduction to Semiconductor Optics (Prentice Hall, Englewood Cliffs, N.J., 1993), Sec. 3.6.

Nylander, C.

B. Liedberg, C. Nylander, I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

C. Nylander, B. Liedberg, T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982/83).
[CrossRef]

Olson, G. A.

Pedley, D.

P. Daniels, J. Deacon, M. Eddowes, D. Pedley, “Surface plasmon resonance applied to immunosensing,” Sens. Actuators 15, 11–18 (1988).
[CrossRef]

Peyghambarian, N.

N. Peyghambarian, S. Koch, A. Mysyrowicz, Introduction to Semiconductor Optics (Prentice Hall, Englewood Cliffs, N.J., 1993), Sec. 3.6.

Raether, H.

H. Raether, “Surface plasma oscillations and their applications,” in Physics of Thin Films, G. Hass, M. Francombe, R. Hoffman, eds. (Academic, New York, 1977), Vol. 9, Chap. 3.

Sarid, D.

Sprokel, G. J.

G. J. Sprokel, J. D. Swalen, “The attenuated total reflection method,” in Handbook of Optical Constants of Solids, E. Palik ed. (Academic, New York, 1991), Chap. 4.

Swalen, J. D.

G. J. Sprokel, J. D. Swalen, “The attenuated total reflection method,” in Handbook of Optical Constants of Solids, E. Palik ed. (Academic, New York, 1991), Chap. 4.

Tentori, D.

D. Tentori, C. L. Famozo, “High-accuracy critical angle refractometry,” Opt. Eng. 32, 593–601 (1993).
[CrossRef]

Uttamchandani, D.

L. Zhang, D. Uttamchandani, “Optical chemical sensing using surface plasmon resonance,” Electron. Lett. 24, 1469–1470 (1988).
[CrossRef]

Welford, K.

K. Welford, “Surface plasmon-polaritons and their uses,” Opt. Quantum Electron. 23, 1–27 (1991).
[CrossRef]

White, H.

F. Jenkins, H. White, Fundamentals of Optics, 4th ed. (McGraw-Hill, New York, 1976), p. 27.

Zhang, L.

L. Zhang, D. Uttamchandani, “Optical chemical sensing using surface plasmon resonance,” Electron. Lett. 24, 1469–1470 (1988).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

L. Zhang, D. Uttamchandani, “Optical chemical sensing using surface plasmon resonance,” Electron. Lett. 24, 1469–1470 (1988).
[CrossRef]

J. Appl. Phys. (1)

M. Mansuripur, “Analysis of multilayer thin-film structures containing magneto-optic and anisotropic media at oblique incidence using 2 × 2 matrices,” J. Appl. Phys. 67, 6466–6475 (1990).
[CrossRef]

Opt. Eng. (1)

D. Tentori, C. L. Famozo, “High-accuracy critical angle refractometry,” Opt. Eng. 32, 593–601 (1993).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

K. Welford, “Surface plasmon-polaritons and their uses,” Opt. Quantum Electron. 23, 1–27 (1991).
[CrossRef]

Sens. Actuators (3)

C. Nylander, B. Liedberg, T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982/83).
[CrossRef]

B. Liedberg, C. Nylander, I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

P. Daniels, J. Deacon, M. Eddowes, D. Pedley, “Surface plasmon resonance applied to immunosensing,” Sens. Actuators 15, 11–18 (1988).
[CrossRef]

Other (5)

H. Raether, “Surface plasma oscillations and their applications,” in Physics of Thin Films, G. Hass, M. Francombe, R. Hoffman, eds. (Academic, New York, 1977), Vol. 9, Chap. 3.

N. Peyghambarian, S. Koch, A. Mysyrowicz, Introduction to Semiconductor Optics (Prentice Hall, Englewood Cliffs, N.J., 1993), Sec. 3.6.

G. J. Sprokel, J. D. Swalen, “The attenuated total reflection method,” in Handbook of Optical Constants of Solids, E. Palik ed. (Academic, New York, 1991), Chap. 4.

D. R. Lide, CRC Handbook of Chemistry and Physics, 77th ed. (CRC Press, Boca Raton Fla., 1996), pp. 12–126.

F. Jenkins, H. White, Fundamentals of Optics, 4th ed. (McGraw-Hill, New York, 1976), p. 27.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of Kretschmann–Raether configuration for exciting surface plasmons. Prism with index n p , metal film with index N, and analyte with index n a .

Fig. 2
Fig. 2

Power reflectivity R TM of TM-polarized field versus internal prism angle θ p for the TIR method. The metal film thickness shown in Fig. 1 is zero. The prism index n p = 1.457 at λ = 0.633 µm.

Fig. 3
Fig. 3

Change in reflectivity ΔR TM versus θ p for the conditions of Fig. 2.

Fig. 4
Fig. 4

Reflectivity R TM versus θ p for the SPR method. The metal film is gold with a complex index N g = 0.13 + i 3.16. The prism index is the same as in Fig. 2; the analyte index is n a = 1.330.

Fig. 5
Fig. 5

Change in reflectivity ΔR TM versus θ p for the conditions of Fig. 4.

Fig. 6
Fig. 6

Maximum reflectivity change ΔR TM,max as a function of film thickness for the conditions of Fig. 4. (a) Gold film results, where the skin depth δ g is approximately 32 nm. (b) Silver results, where δ s is 24 nm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

θTIR=sin-1na/np,
ksp=ωc Re 1a+1mω-1/2,
kx=ωnp sin θp/c.
mω=1-ωp2ω2.

Metrics