Abstract

We compare two angular regimes for the measurement of changes in the real refractive index of bulk fluid analytes. The measurements are based on the use of the Kretschmann–Raether configuration to sense a change in reflectivity with index. Specifically, we numerically simulate the relative sensitivities of the total internal reflection (TIR) and the surface-plasmon resonance (SPR) regimes. For a fixed-angle apparatus, the method that gives the greatest change in reflectivity varies with metal film thickness. For films thicker than the skin depth, the SPR regime is the most sensitive to index changes. For thinner films, however, the TIR angle is then dominant, with increases in sensitivity on the order of 75% for 10-nm gold or silver media.

© 2000 Optical Society of America

Full Article  |  PDF Article
Related Articles
Sensitivity and detection limit of concentration and adsorption measurements by laser-induced surface-plasmon resonance

A. A. Kolomenskii, P. D. Gershon, and H. A. Schuessler
Appl. Opt. 36(25) 6539-6547 (1997)

Photonic bandgap fiber-based Surface Plasmon Resonance sensors

Bertrand Gauvreau, Alireza Hassani, Majid Fassi Fehri, Andrei Kabashin, and Maksim Skorobogatiy
Opt. Express 15(18) 11413-11426 (2007)

Surface plasmon resonance (SPR) sensors: approaching their limits?

Marek Piliarik and Jiří Homola
Opt. Express 17(19) 16505-16517 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription