Abstract

We combine a radiation-pressure-based levitation system with a dual fiber, laser trapping system to demonstrate the potential of delivering single particles into the fiber trap. The forces versus position and the trajectory of the particle subjected to the laser beams are examined with an enhanced ray optics model. A sequence of video images taken from the experimental apparatus demonstrates the principle of particle delivery, trapping, and further manipulation.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
    [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, “Observation of radiation-pressure trapping by alternating light beams,” Phys. Rev. Lett. 54, 1245–1248 (1985).
    [CrossRef] [PubMed]
  3. A. Constable, J. Kim, J. Mervist, F. Zarinetchi, M. Prentiss, “Demonstration of a fiber-optical light-force trap,” Opt. Lett. 18, 1867–1869 (1993).
    [CrossRef] [PubMed]
  4. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 228–290 (1986).
    [CrossRef]
  5. R. Gussgard, T. Lindmo, I. Brevik, “Calculation of the trapping force in a strongly focused laser beam,” J. Opt. Soc. Am. B 9, 1992–1930 (1992).
    [CrossRef]
  6. G. Martinot-Lagarde, B. Pouligny, M. I. Angelova, G. Gréhan, G. Gouesbet, “Trapping and levitation of a dielectric sphere with off-centered Gaussian beams: II. GLMT analysis,” Pure Appl. Opt. 4, 571–585 (1995).
    [CrossRef]
  7. K. Visscher, G. J. Brakenhoff, “Theoretical study of optically induced forces on spherical particles in a single beam trap. II: Mie scatterers,” Optik 90, 57–60 (1992).
  8. R. C. Gauthier, “Trapping model for the low-index ring-shaped micro-object in a focused, lowest-order Gaussian laser-beam profile,” J. Opt. Soc. Am. B 14, 782–789 (1997).
    [CrossRef]
  9. R. Roosen, B. Delaunay, C. Imbert, “Etude de la pression de radiation exercée par un faisceau lumineux sur une sphère réfringente,” J. Opt. (Paris) 8, 181–187 (1977).
    [CrossRef]
  10. T. C. Bakker Schut, G. Hesselink, B. G. de Grooth, J. Greve, “Experimental and theoretical investigation on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).
    [CrossRef]
  11. R. C. Gauthier, “Theoretical model for an improved radiation pressure micromotor,” Appl. Phys. Lett. 69, 2015–2017 (1996).
    [CrossRef]
  12. R. C. Gauthier, “Theoretical investigation of the optical trapping force and torque on cylindrical micro-objects,” J. Opt. Soc. Am. B 14, 3323–3333 (1997).
    [CrossRef]
  13. R. C. Gauthier, M. Ashman, “Simulated dynamic behavior of single and multiple spheres in the trap region of focused laser beams,” Appl. Opt. 37, 6421–6431 (1998).
    [CrossRef]
  14. A. Ashkin, J. M. Dziedzic, “Observation of light scattering from nonspherical particles using optical levitation,” Appl. Opt. 19, 660–668 (1980).
    [CrossRef] [PubMed]
  15. J. P. Pochelle, J. Raffy, Y. Combemale, M. Papuchon, G. Roosen, M. T. Plantegenest, “Optical levitation using single-mode fibers and its application to self-centering of microlenses,” Appl. Phys. Lett. 45, 350–352 (1984).
    [CrossRef]
  16. E. Higurashi, H. Ukita, H. Tanaka, O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209–2210 (1994).
    [CrossRef]
  17. E. Sidick, S. D. Collins, A. Knoesen, “Trapping forces in a multiple-beam fiber-optic trap,” Appl. Opt. 36, 6423–6433 (1997).
    [CrossRef]
  18. E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, R. Sawada, “Optically induced rotation of dissymmetrically shaped fluorinated polymide micro-objects in optical traps,” J. Appl. Phys. 82, 2733–2779 (1997).
    [CrossRef]
  19. D. R. Koehler, “Optical actuation of micromechanical components,” J. Opt. Soc. Am. B 14, 2197–2203 (1997).
    [CrossRef]

1998

1997

1996

R. C. Gauthier, “Theoretical model for an improved radiation pressure micromotor,” Appl. Phys. Lett. 69, 2015–2017 (1996).
[CrossRef]

1995

G. Martinot-Lagarde, B. Pouligny, M. I. Angelova, G. Gréhan, G. Gouesbet, “Trapping and levitation of a dielectric sphere with off-centered Gaussian beams: II. GLMT analysis,” Pure Appl. Opt. 4, 571–585 (1995).
[CrossRef]

1994

E. Higurashi, H. Ukita, H. Tanaka, O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209–2210 (1994).
[CrossRef]

1993

1992

K. Visscher, G. J. Brakenhoff, “Theoretical study of optically induced forces on spherical particles in a single beam trap. II: Mie scatterers,” Optik 90, 57–60 (1992).

R. Gussgard, T. Lindmo, I. Brevik, “Calculation of the trapping force in a strongly focused laser beam,” J. Opt. Soc. Am. B 9, 1992–1930 (1992).
[CrossRef]

1991

T. C. Bakker Schut, G. Hesselink, B. G. de Grooth, J. Greve, “Experimental and theoretical investigation on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).
[CrossRef]

1986

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 228–290 (1986).
[CrossRef]

1985

A. Ashkin, J. M. Dziedzic, “Observation of radiation-pressure trapping by alternating light beams,” Phys. Rev. Lett. 54, 1245–1248 (1985).
[CrossRef] [PubMed]

1984

J. P. Pochelle, J. Raffy, Y. Combemale, M. Papuchon, G. Roosen, M. T. Plantegenest, “Optical levitation using single-mode fibers and its application to self-centering of microlenses,” Appl. Phys. Lett. 45, 350–352 (1984).
[CrossRef]

1980

1977

R. Roosen, B. Delaunay, C. Imbert, “Etude de la pression de radiation exercée par un faisceau lumineux sur une sphère réfringente,” J. Opt. (Paris) 8, 181–187 (1977).
[CrossRef]

1970

A. Ashkin, “Acceleration and trapping by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Angelova, M. I.

G. Martinot-Lagarde, B. Pouligny, M. I. Angelova, G. Gréhan, G. Gouesbet, “Trapping and levitation of a dielectric sphere with off-centered Gaussian beams: II. GLMT analysis,” Pure Appl. Opt. 4, 571–585 (1995).
[CrossRef]

Ashkin, A.

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 228–290 (1986).
[CrossRef]

A. Ashkin, J. M. Dziedzic, “Observation of radiation-pressure trapping by alternating light beams,” Phys. Rev. Lett. 54, 1245–1248 (1985).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, “Observation of light scattering from nonspherical particles using optical levitation,” Appl. Opt. 19, 660–668 (1980).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Ashman, M.

Bakker Schut, T. C.

T. C. Bakker Schut, G. Hesselink, B. G. de Grooth, J. Greve, “Experimental and theoretical investigation on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).
[CrossRef]

Bjorkholm, J. E.

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 228–290 (1986).
[CrossRef]

Brakenhoff, G. J.

K. Visscher, G. J. Brakenhoff, “Theoretical study of optically induced forces on spherical particles in a single beam trap. II: Mie scatterers,” Optik 90, 57–60 (1992).

Brevik, I.

R. Gussgard, T. Lindmo, I. Brevik, “Calculation of the trapping force in a strongly focused laser beam,” J. Opt. Soc. Am. B 9, 1992–1930 (1992).
[CrossRef]

Chu, S.

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 228–290 (1986).
[CrossRef]

Collins, S. D.

Combemale, Y.

J. P. Pochelle, J. Raffy, Y. Combemale, M. Papuchon, G. Roosen, M. T. Plantegenest, “Optical levitation using single-mode fibers and its application to self-centering of microlenses,” Appl. Phys. Lett. 45, 350–352 (1984).
[CrossRef]

Constable, A.

de Grooth, B. G.

T. C. Bakker Schut, G. Hesselink, B. G. de Grooth, J. Greve, “Experimental and theoretical investigation on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).
[CrossRef]

Delaunay, B.

R. Roosen, B. Delaunay, C. Imbert, “Etude de la pression de radiation exercée par un faisceau lumineux sur une sphère réfringente,” J. Opt. (Paris) 8, 181–187 (1977).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 228–290 (1986).
[CrossRef]

A. Ashkin, J. M. Dziedzic, “Observation of radiation-pressure trapping by alternating light beams,” Phys. Rev. Lett. 54, 1245–1248 (1985).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, “Observation of light scattering from nonspherical particles using optical levitation,” Appl. Opt. 19, 660–668 (1980).
[CrossRef] [PubMed]

Gauthier, R. C.

Gouesbet, G.

G. Martinot-Lagarde, B. Pouligny, M. I. Angelova, G. Gréhan, G. Gouesbet, “Trapping and levitation of a dielectric sphere with off-centered Gaussian beams: II. GLMT analysis,” Pure Appl. Opt. 4, 571–585 (1995).
[CrossRef]

Gréhan, G.

G. Martinot-Lagarde, B. Pouligny, M. I. Angelova, G. Gréhan, G. Gouesbet, “Trapping and levitation of a dielectric sphere with off-centered Gaussian beams: II. GLMT analysis,” Pure Appl. Opt. 4, 571–585 (1995).
[CrossRef]

Greve, J.

T. C. Bakker Schut, G. Hesselink, B. G. de Grooth, J. Greve, “Experimental and theoretical investigation on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).
[CrossRef]

Gussgard, R.

R. Gussgard, T. Lindmo, I. Brevik, “Calculation of the trapping force in a strongly focused laser beam,” J. Opt. Soc. Am. B 9, 1992–1930 (1992).
[CrossRef]

Hesselink, G.

T. C. Bakker Schut, G. Hesselink, B. G. de Grooth, J. Greve, “Experimental and theoretical investigation on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).
[CrossRef]

Higurashi, E.

E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, R. Sawada, “Optically induced rotation of dissymmetrically shaped fluorinated polymide micro-objects in optical traps,” J. Appl. Phys. 82, 2733–2779 (1997).
[CrossRef]

E. Higurashi, H. Ukita, H. Tanaka, O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209–2210 (1994).
[CrossRef]

Imbert, C.

R. Roosen, B. Delaunay, C. Imbert, “Etude de la pression de radiation exercée par un faisceau lumineux sur une sphère réfringente,” J. Opt. (Paris) 8, 181–187 (1977).
[CrossRef]

Kim, J.

Knoesen, A.

Koehler, D. R.

Lindmo, T.

R. Gussgard, T. Lindmo, I. Brevik, “Calculation of the trapping force in a strongly focused laser beam,” J. Opt. Soc. Am. B 9, 1992–1930 (1992).
[CrossRef]

Martinot-Lagarde, G.

G. Martinot-Lagarde, B. Pouligny, M. I. Angelova, G. Gréhan, G. Gouesbet, “Trapping and levitation of a dielectric sphere with off-centered Gaussian beams: II. GLMT analysis,” Pure Appl. Opt. 4, 571–585 (1995).
[CrossRef]

Mervist, J.

Ohguchi, O.

E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, R. Sawada, “Optically induced rotation of dissymmetrically shaped fluorinated polymide micro-objects in optical traps,” J. Appl. Phys. 82, 2733–2779 (1997).
[CrossRef]

E. Higurashi, H. Ukita, H. Tanaka, O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209–2210 (1994).
[CrossRef]

Papuchon, M.

J. P. Pochelle, J. Raffy, Y. Combemale, M. Papuchon, G. Roosen, M. T. Plantegenest, “Optical levitation using single-mode fibers and its application to self-centering of microlenses,” Appl. Phys. Lett. 45, 350–352 (1984).
[CrossRef]

Plantegenest, M. T.

J. P. Pochelle, J. Raffy, Y. Combemale, M. Papuchon, G. Roosen, M. T. Plantegenest, “Optical levitation using single-mode fibers and its application to self-centering of microlenses,” Appl. Phys. Lett. 45, 350–352 (1984).
[CrossRef]

Pochelle, J. P.

J. P. Pochelle, J. Raffy, Y. Combemale, M. Papuchon, G. Roosen, M. T. Plantegenest, “Optical levitation using single-mode fibers and its application to self-centering of microlenses,” Appl. Phys. Lett. 45, 350–352 (1984).
[CrossRef]

Pouligny, B.

G. Martinot-Lagarde, B. Pouligny, M. I. Angelova, G. Gréhan, G. Gouesbet, “Trapping and levitation of a dielectric sphere with off-centered Gaussian beams: II. GLMT analysis,” Pure Appl. Opt. 4, 571–585 (1995).
[CrossRef]

Prentiss, M.

Raffy, J.

J. P. Pochelle, J. Raffy, Y. Combemale, M. Papuchon, G. Roosen, M. T. Plantegenest, “Optical levitation using single-mode fibers and its application to self-centering of microlenses,” Appl. Phys. Lett. 45, 350–352 (1984).
[CrossRef]

Roosen, G.

J. P. Pochelle, J. Raffy, Y. Combemale, M. Papuchon, G. Roosen, M. T. Plantegenest, “Optical levitation using single-mode fibers and its application to self-centering of microlenses,” Appl. Phys. Lett. 45, 350–352 (1984).
[CrossRef]

Roosen, R.

R. Roosen, B. Delaunay, C. Imbert, “Etude de la pression de radiation exercée par un faisceau lumineux sur une sphère réfringente,” J. Opt. (Paris) 8, 181–187 (1977).
[CrossRef]

Sawada, R.

E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, R. Sawada, “Optically induced rotation of dissymmetrically shaped fluorinated polymide micro-objects in optical traps,” J. Appl. Phys. 82, 2733–2779 (1997).
[CrossRef]

Sidick, E.

Tamamura, T.

E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, R. Sawada, “Optically induced rotation of dissymmetrically shaped fluorinated polymide micro-objects in optical traps,” J. Appl. Phys. 82, 2733–2779 (1997).
[CrossRef]

Tanaka, H.

E. Higurashi, H. Ukita, H. Tanaka, O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209–2210 (1994).
[CrossRef]

Ukita, H.

E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, R. Sawada, “Optically induced rotation of dissymmetrically shaped fluorinated polymide micro-objects in optical traps,” J. Appl. Phys. 82, 2733–2779 (1997).
[CrossRef]

E. Higurashi, H. Ukita, H. Tanaka, O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209–2210 (1994).
[CrossRef]

Visscher, K.

K. Visscher, G. J. Brakenhoff, “Theoretical study of optically induced forces on spherical particles in a single beam trap. II: Mie scatterers,” Optik 90, 57–60 (1992).

Zarinetchi, F.

Appl. Opt.

Appl. Phys. Lett.

J. P. Pochelle, J. Raffy, Y. Combemale, M. Papuchon, G. Roosen, M. T. Plantegenest, “Optical levitation using single-mode fibers and its application to self-centering of microlenses,” Appl. Phys. Lett. 45, 350–352 (1984).
[CrossRef]

E. Higurashi, H. Ukita, H. Tanaka, O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209–2210 (1994).
[CrossRef]

R. C. Gauthier, “Theoretical model for an improved radiation pressure micromotor,” Appl. Phys. Lett. 69, 2015–2017 (1996).
[CrossRef]

Cytometry

T. C. Bakker Schut, G. Hesselink, B. G. de Grooth, J. Greve, “Experimental and theoretical investigation on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).
[CrossRef]

J. Appl. Phys.

E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, R. Sawada, “Optically induced rotation of dissymmetrically shaped fluorinated polymide micro-objects in optical traps,” J. Appl. Phys. 82, 2733–2779 (1997).
[CrossRef]

J. Opt. (Paris)

R. Roosen, B. Delaunay, C. Imbert, “Etude de la pression de radiation exercée par un faisceau lumineux sur une sphère réfringente,” J. Opt. (Paris) 8, 181–187 (1977).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

A. Constable, J. Kim, J. Mervist, F. Zarinetchi, M. Prentiss, “Demonstration of a fiber-optical light-force trap,” Opt. Lett. 18, 1867–1869 (1993).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 228–290 (1986).
[CrossRef]

Optik

K. Visscher, G. J. Brakenhoff, “Theoretical study of optically induced forces on spherical particles in a single beam trap. II: Mie scatterers,” Optik 90, 57–60 (1992).

Phys. Rev. Lett.

A. Ashkin, “Acceleration and trapping by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

A. Ashkin, J. M. Dziedzic, “Observation of radiation-pressure trapping by alternating light beams,” Phys. Rev. Lett. 54, 1245–1248 (1985).
[CrossRef] [PubMed]

Pure Appl. Opt.

G. Martinot-Lagarde, B. Pouligny, M. I. Angelova, G. Gréhan, G. Gouesbet, “Trapping and levitation of a dielectric sphere with off-centered Gaussian beams: II. GLMT analysis,” Pure Appl. Opt. 4, 571–585 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Geometry used in development of radiation-pressure-based force and torque expressions. The inset shows the orientation of the three beams as positioned in the delivery system.

Fig. 2
Fig. 2

Axial force present on the 2.5-µm sphere when subjected to the levitation beam only and with gravity included. The z = 0-µm position is the minimum waist location. Over the 150-µm range shown the axial force is relatively uniform owing to the large waist of the beam. The z = 100-µm plane corresponds to the plane of the dual fiber trap.

Fig. 3
Fig. 3

Radial force present on the 2.5-µm sphere when subjected to the levitation beam only and with gravity present. The radial force is zero on axis and acts as a restoring force when the sphere is slightly displaced from the axis of the beam.

Fig. 4
Fig. 4

Axial force present on the 2.5-µm sphere located in the region between the fiber tips. The fibers are located at +50 and -50 µm of equal power and mode profile. The two beams propagate toward each other, resulting in the zero axial force for the sphere located midway between the fiber tips. This location is an axial trap location since any axial displacement of the sphere results in the sphere being pushed toward the middle position.

Fig. 5
Fig. 5

Radial force present on the 2.5-µm sphere located in the region between the fiber tips. The two beams propagate toward each other, combining their radial force components trapping axially the sphere in the beam axis.

Fig. 6
Fig. 6

Levitation and trapping of the 2.5-µm sphere as it starts in the minimum waist plane displaced in (x, y) by -5 and -2 µm and an initial velocity of +5 µm/s. The sphere is levitated into the dual-trap plane where it comes to rest centered on the levitation beam and slightly above the fiber plane. The inset shows the trajectory of the 5.0-µm radius sphere subjected to the same beams and initial conditions. Tic marks are at 1-s intervals.

Fig. 7
Fig. 7

Levitation of the 2.5-µm sphere into the trap region created by the dual fibers. The fiber on the right has twice the power of the fiber on the left. The sphere comes to rest closer to the weaker fiber’s tip and slightly above the fiber plane owing to the presence of the levitation beam. For comparison the inset shows the 5.0-µm sphere’s trajectory. Tic marks are at 1-s intervals.

Fig. 8
Fig. 8

Experimental setup of the particle-delivery system in which a conventional levitation and dual-fiber radiation-pressure system are combined. The two separate monitoring systems provide views in the plane of the sample base (for particle selection) and in the plane of all three beams for observing the delivery and capture of the particle.

Fig. 9
Fig. 9

Video sequence showing (a), (b) the rise of a 2.5-µm sphere in the levitation beam and (c), (d) capture by the dual fiber trap beams.

Fig. 10
Fig. 10

Manipulation of a microsphere between the endfaces of the two fibers. From (a) to (f) the sphere is displaced from the left fiber endface to the right fiber endface by controlling the relative power of the two beams.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

RTE=|rTE|2=nin cosθin-nout cosθoutnin cosθin+nout cosθout2,  TTE=|tTE|2=|1-rTE|2,  RTM=|rTM|2=nout cosθin-nin cosθoutnout cosθin+nin cosθout2,  TTM=|tTM|2=|1-rTM|2,
Rav=RTE+RTM/2.
dPr=hλo ninLo-Lrxˆ+Mo-Mryˆ+No-Nrzˆ,
dPt=hλo ninLo-noutnin Ltxˆ+Mo-noutnin Mtyˆ+No-noutnin Ntzˆ,
Ix, y, z=2PπWz2 exp-2x2+y2Wz2,
Ni=Ix, y, zdAE,
F= dFi= NiRavdPr+1-RavdPt.
ri=xi-xoxˆ+yi-yoyˆ+zi-zozˆ.
τ= dτi= ri×dFi.

Metrics