Abstract

Light propagation through gratings with periods as small as λ/20 is investigated computationally by use of the multiple multipole method in two dimensions. High image contrast is evident close to the grating. Strong evanescent decay of the high spatial frequency components is observed with the region of high contrast shrinking linearly as the period of the grating is decreased. Simulations were performed for TE and TM polarizations with the TM polarization providing the dominant contrast compared with TE, which is strongly attenuated owing to the polarizing effect of the gratings. These results show good promise for optical contact lithography in the evanescent near field of a shadow mask to attain feature sizes smaller than λ/20.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Y. Chou, P. R. Krauss, P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67, 3114–3116 (1995).
    [CrossRef]
  2. J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near-field,” Appl. Phys. Lett. 70, 2658–2660 (1997).
    [CrossRef]
  3. M. M. Alkaisi, R. J. Blaikie, S. J. McNab, “Nanolithography using wet etched silicon nitride phase masks,” J. Vac. Sci. Technol. B 16, 3929–3933 (1998).
    [CrossRef]
  4. V. Bouchiat, D. Esteve, “Lift-off lithography using an atomic force microscope,” Appl. Phys. Lett. 69, 398–400 (1996).
    [CrossRef]
  5. S. Davy, M. Spajer, “Near field optics: snapshot of the field emitted by a nanosource using a photosensitive polymer,” Appl. Phys. Lett. 69, 3306–3308 (1996).
    [CrossRef]
  6. R. Blaikie, M. Alkaisi, S. McNab, D. Cumming, D. Hasko, “Nanolithography using optical contact exposure in the evanescent near field,” Microelectron. Eng. 46, 85–88 (1999).
    [CrossRef]
  7. H. Schmid, H. Biebuyck, B. Michel, O. J. F. Martin, “Light-coupling masks for lensless, sub-wavelength optical lithography,” Appl. Phys. Lett. 72, 2379–2381 (1998).
    [CrossRef]
  8. H. Schmid, H. Biebuyck, B. Michel, O. J. F. Martin, N. B. Piller, “Light-coupling masks: an alternative, lensless approach to high-resolution optical contact lithography,” J. Vac. Sci. Technol. B 16, 3422–3425 (1998).
    [CrossRef]
  9. T. Ono, M. Esashi, “Subwavelength pattern transfer by near-field photolithography,” Jpn. J. Appl. Phys. 37, 6745–6749 (1998).
    [CrossRef]
  10. H. I. Smith, N. Efremow, P. L. Kelly, “Photolithographic contact printing of 4000Å linewidth patterns,” J. Electrochem. Soc. 121, 1503–1506 (1974).
    [CrossRef]
  11. B. J. Lin, “Electromagnetic near-field diffraction in a medium slit,” J. Opt. Soc. Am. 62, 976–981 (1972).
    [CrossRef]
  12. C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech House, Boston, 1990).
  13. D. W. Novotny, L. Pohl, P. Regli, “Light propagation through nanometer-sized structures: the two-dimensional-aperture scanning near-field optical microscope,” J. Opt. Soc. Am. A 11, 1768–1779 (1994).
    [CrossRef]
  14. M. G. Moharam, E. B. Gran, D. A. Pommet, T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
    [CrossRef]
  15. Y. Chen, R. K. Kupka, “Analysis of the near field image formation of dielectric gratings,” Ultramicroscopy 57, 153–159 (1995).
    [CrossRef]
  16. C. H. Hafner, MaX-1 A Visual Electromagnetics Platform (Wiley, Chichester, England, 1998).
  17. C. Hafner, “Multiple multipole (MMP) computations of guided waves and waveguide discontinuities,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields (Wiley, Chichester, 1990), Vol. 3, pp. 247–257.
    [CrossRef]
  18. C. H. Hafner, Post-Modern Electromagnetics Using Intelligent Maxwell Solvers (Wiley, Chichester, England, 1998).
  19. D. R. Lide, ed., Handbook of Chemistry and Physics, 75th ed. (CRC Press, Boca Raton, Fla., 1994).

1999

R. Blaikie, M. Alkaisi, S. McNab, D. Cumming, D. Hasko, “Nanolithography using optical contact exposure in the evanescent near field,” Microelectron. Eng. 46, 85–88 (1999).
[CrossRef]

1998

H. Schmid, H. Biebuyck, B. Michel, O. J. F. Martin, “Light-coupling masks for lensless, sub-wavelength optical lithography,” Appl. Phys. Lett. 72, 2379–2381 (1998).
[CrossRef]

H. Schmid, H. Biebuyck, B. Michel, O. J. F. Martin, N. B. Piller, “Light-coupling masks: an alternative, lensless approach to high-resolution optical contact lithography,” J. Vac. Sci. Technol. B 16, 3422–3425 (1998).
[CrossRef]

T. Ono, M. Esashi, “Subwavelength pattern transfer by near-field photolithography,” Jpn. J. Appl. Phys. 37, 6745–6749 (1998).
[CrossRef]

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, “Nanolithography using wet etched silicon nitride phase masks,” J. Vac. Sci. Technol. B 16, 3929–3933 (1998).
[CrossRef]

1997

J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near-field,” Appl. Phys. Lett. 70, 2658–2660 (1997).
[CrossRef]

1996

V. Bouchiat, D. Esteve, “Lift-off lithography using an atomic force microscope,” Appl. Phys. Lett. 69, 398–400 (1996).
[CrossRef]

S. Davy, M. Spajer, “Near field optics: snapshot of the field emitted by a nanosource using a photosensitive polymer,” Appl. Phys. Lett. 69, 3306–3308 (1996).
[CrossRef]

1995

S. Y. Chou, P. R. Krauss, P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67, 3114–3116 (1995).
[CrossRef]

Y. Chen, R. K. Kupka, “Analysis of the near field image formation of dielectric gratings,” Ultramicroscopy 57, 153–159 (1995).
[CrossRef]

M. G. Moharam, E. B. Gran, D. A. Pommet, T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
[CrossRef]

1994

1974

H. I. Smith, N. Efremow, P. L. Kelly, “Photolithographic contact printing of 4000Å linewidth patterns,” J. Electrochem. Soc. 121, 1503–1506 (1974).
[CrossRef]

1972

Alkaisi, M.

R. Blaikie, M. Alkaisi, S. McNab, D. Cumming, D. Hasko, “Nanolithography using optical contact exposure in the evanescent near field,” Microelectron. Eng. 46, 85–88 (1999).
[CrossRef]

Alkaisi, M. M.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, “Nanolithography using wet etched silicon nitride phase masks,” J. Vac. Sci. Technol. B 16, 3929–3933 (1998).
[CrossRef]

Biebuyck, H.

H. Schmid, H. Biebuyck, B. Michel, O. J. F. Martin, “Light-coupling masks for lensless, sub-wavelength optical lithography,” Appl. Phys. Lett. 72, 2379–2381 (1998).
[CrossRef]

H. Schmid, H. Biebuyck, B. Michel, O. J. F. Martin, N. B. Piller, “Light-coupling masks: an alternative, lensless approach to high-resolution optical contact lithography,” J. Vac. Sci. Technol. B 16, 3422–3425 (1998).
[CrossRef]

Blaikie, R.

R. Blaikie, M. Alkaisi, S. McNab, D. Cumming, D. Hasko, “Nanolithography using optical contact exposure in the evanescent near field,” Microelectron. Eng. 46, 85–88 (1999).
[CrossRef]

Blaikie, R. J.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, “Nanolithography using wet etched silicon nitride phase masks,” J. Vac. Sci. Technol. B 16, 3929–3933 (1998).
[CrossRef]

Bouchiat, V.

V. Bouchiat, D. Esteve, “Lift-off lithography using an atomic force microscope,” Appl. Phys. Lett. 69, 398–400 (1996).
[CrossRef]

Chen, Y.

Y. Chen, R. K. Kupka, “Analysis of the near field image formation of dielectric gratings,” Ultramicroscopy 57, 153–159 (1995).
[CrossRef]

Chou, S. Y.

S. Y. Chou, P. R. Krauss, P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67, 3114–3116 (1995).
[CrossRef]

Cumming, D.

R. Blaikie, M. Alkaisi, S. McNab, D. Cumming, D. Hasko, “Nanolithography using optical contact exposure in the evanescent near field,” Microelectron. Eng. 46, 85–88 (1999).
[CrossRef]

Davy, S.

S. Davy, M. Spajer, “Near field optics: snapshot of the field emitted by a nanosource using a photosensitive polymer,” Appl. Phys. Lett. 69, 3306–3308 (1996).
[CrossRef]

Efremow, N.

H. I. Smith, N. Efremow, P. L. Kelly, “Photolithographic contact printing of 4000Å linewidth patterns,” J. Electrochem. Soc. 121, 1503–1506 (1974).
[CrossRef]

Esashi, M.

T. Ono, M. Esashi, “Subwavelength pattern transfer by near-field photolithography,” Jpn. J. Appl. Phys. 37, 6745–6749 (1998).
[CrossRef]

Esteve, D.

V. Bouchiat, D. Esteve, “Lift-off lithography using an atomic force microscope,” Appl. Phys. Lett. 69, 398–400 (1996).
[CrossRef]

Gaylord, T. K.

Gran, E. B.

Hafner, C.

C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech House, Boston, 1990).

C. Hafner, “Multiple multipole (MMP) computations of guided waves and waveguide discontinuities,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields (Wiley, Chichester, 1990), Vol. 3, pp. 247–257.
[CrossRef]

Hafner, C. H.

C. H. Hafner, Post-Modern Electromagnetics Using Intelligent Maxwell Solvers (Wiley, Chichester, England, 1998).

C. H. Hafner, MaX-1 A Visual Electromagnetics Platform (Wiley, Chichester, England, 1998).

Hasko, D.

R. Blaikie, M. Alkaisi, S. McNab, D. Cumming, D. Hasko, “Nanolithography using optical contact exposure in the evanescent near field,” Microelectron. Eng. 46, 85–88 (1999).
[CrossRef]

Jackman, R. J.

J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near-field,” Appl. Phys. Lett. 70, 2658–2660 (1997).
[CrossRef]

Kelly, P. L.

H. I. Smith, N. Efremow, P. L. Kelly, “Photolithographic contact printing of 4000Å linewidth patterns,” J. Electrochem. Soc. 121, 1503–1506 (1974).
[CrossRef]

Krauss, P. R.

S. Y. Chou, P. R. Krauss, P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67, 3114–3116 (1995).
[CrossRef]

Kupka, R. K.

Y. Chen, R. K. Kupka, “Analysis of the near field image formation of dielectric gratings,” Ultramicroscopy 57, 153–159 (1995).
[CrossRef]

Lin, B. J.

Martin, O. J. F.

H. Schmid, H. Biebuyck, B. Michel, O. J. F. Martin, “Light-coupling masks for lensless, sub-wavelength optical lithography,” Appl. Phys. Lett. 72, 2379–2381 (1998).
[CrossRef]

H. Schmid, H. Biebuyck, B. Michel, O. J. F. Martin, N. B. Piller, “Light-coupling masks: an alternative, lensless approach to high-resolution optical contact lithography,” J. Vac. Sci. Technol. B 16, 3422–3425 (1998).
[CrossRef]

McNab, S.

R. Blaikie, M. Alkaisi, S. McNab, D. Cumming, D. Hasko, “Nanolithography using optical contact exposure in the evanescent near field,” Microelectron. Eng. 46, 85–88 (1999).
[CrossRef]

McNab, S. J.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, “Nanolithography using wet etched silicon nitride phase masks,” J. Vac. Sci. Technol. B 16, 3929–3933 (1998).
[CrossRef]

Michel, B.

H. Schmid, H. Biebuyck, B. Michel, O. J. F. Martin, “Light-coupling masks for lensless, sub-wavelength optical lithography,” Appl. Phys. Lett. 72, 2379–2381 (1998).
[CrossRef]

H. Schmid, H. Biebuyck, B. Michel, O. J. F. Martin, N. B. Piller, “Light-coupling masks: an alternative, lensless approach to high-resolution optical contact lithography,” J. Vac. Sci. Technol. B 16, 3422–3425 (1998).
[CrossRef]

Moharam, M. G.

Novotny, D. W.

Ono, T.

T. Ono, M. Esashi, “Subwavelength pattern transfer by near-field photolithography,” Jpn. J. Appl. Phys. 37, 6745–6749 (1998).
[CrossRef]

Paul, K. E.

J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near-field,” Appl. Phys. Lett. 70, 2658–2660 (1997).
[CrossRef]

Piller, N. B.

H. Schmid, H. Biebuyck, B. Michel, O. J. F. Martin, N. B. Piller, “Light-coupling masks: an alternative, lensless approach to high-resolution optical contact lithography,” J. Vac. Sci. Technol. B 16, 3422–3425 (1998).
[CrossRef]

Pohl, L.

Pommet, D. A.

Regli, P.

Renstrom, P. J.

S. Y. Chou, P. R. Krauss, P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67, 3114–3116 (1995).
[CrossRef]

Rogers, J. A.

J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near-field,” Appl. Phys. Lett. 70, 2658–2660 (1997).
[CrossRef]

Schmid, H.

H. Schmid, H. Biebuyck, B. Michel, O. J. F. Martin, N. B. Piller, “Light-coupling masks: an alternative, lensless approach to high-resolution optical contact lithography,” J. Vac. Sci. Technol. B 16, 3422–3425 (1998).
[CrossRef]

H. Schmid, H. Biebuyck, B. Michel, O. J. F. Martin, “Light-coupling masks for lensless, sub-wavelength optical lithography,” Appl. Phys. Lett. 72, 2379–2381 (1998).
[CrossRef]

Smith, H. I.

H. I. Smith, N. Efremow, P. L. Kelly, “Photolithographic contact printing of 4000Å linewidth patterns,” J. Electrochem. Soc. 121, 1503–1506 (1974).
[CrossRef]

Spajer, M.

S. Davy, M. Spajer, “Near field optics: snapshot of the field emitted by a nanosource using a photosensitive polymer,” Appl. Phys. Lett. 69, 3306–3308 (1996).
[CrossRef]

Whitesides, G. M.

J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near-field,” Appl. Phys. Lett. 70, 2658–2660 (1997).
[CrossRef]

Appl. Phys. Lett.

S. Y. Chou, P. R. Krauss, P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67, 3114–3116 (1995).
[CrossRef]

J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near-field,” Appl. Phys. Lett. 70, 2658–2660 (1997).
[CrossRef]

V. Bouchiat, D. Esteve, “Lift-off lithography using an atomic force microscope,” Appl. Phys. Lett. 69, 398–400 (1996).
[CrossRef]

S. Davy, M. Spajer, “Near field optics: snapshot of the field emitted by a nanosource using a photosensitive polymer,” Appl. Phys. Lett. 69, 3306–3308 (1996).
[CrossRef]

H. Schmid, H. Biebuyck, B. Michel, O. J. F. Martin, “Light-coupling masks for lensless, sub-wavelength optical lithography,” Appl. Phys. Lett. 72, 2379–2381 (1998).
[CrossRef]

J. Electrochem. Soc.

H. I. Smith, N. Efremow, P. L. Kelly, “Photolithographic contact printing of 4000Å linewidth patterns,” J. Electrochem. Soc. 121, 1503–1506 (1974).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Vac. Sci. Technol. B

H. Schmid, H. Biebuyck, B. Michel, O. J. F. Martin, N. B. Piller, “Light-coupling masks: an alternative, lensless approach to high-resolution optical contact lithography,” J. Vac. Sci. Technol. B 16, 3422–3425 (1998).
[CrossRef]

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, “Nanolithography using wet etched silicon nitride phase masks,” J. Vac. Sci. Technol. B 16, 3929–3933 (1998).
[CrossRef]

Jpn. J. Appl. Phys.

T. Ono, M. Esashi, “Subwavelength pattern transfer by near-field photolithography,” Jpn. J. Appl. Phys. 37, 6745–6749 (1998).
[CrossRef]

Microelectron. Eng.

R. Blaikie, M. Alkaisi, S. McNab, D. Cumming, D. Hasko, “Nanolithography using optical contact exposure in the evanescent near field,” Microelectron. Eng. 46, 85–88 (1999).
[CrossRef]

Ultramicroscopy

Y. Chen, R. K. Kupka, “Analysis of the near field image formation of dielectric gratings,” Ultramicroscopy 57, 153–159 (1995).
[CrossRef]

Other

C. H. Hafner, MaX-1 A Visual Electromagnetics Platform (Wiley, Chichester, England, 1998).

C. Hafner, “Multiple multipole (MMP) computations of guided waves and waveguide discontinuities,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields (Wiley, Chichester, 1990), Vol. 3, pp. 247–257.
[CrossRef]

C. H. Hafner, Post-Modern Electromagnetics Using Intelligent Maxwell Solvers (Wiley, Chichester, England, 1998).

D. R. Lide, ed., Handbook of Chemistry and Physics, 75th ed. (CRC Press, Boca Raton, Fla., 1994).

C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech House, Boston, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Simulation model for ENFOL grating masks illustrating the TE and the TM source polarization orientations.

Fig. 2
Fig. 2

Normalized intensity at the exit plane of gratings with periods (a) of 200 nm, (b) of 140 nm, (c) of 80 nm, (d) of 20 nm. TM and TE excitation are the solid and the dashed curves, respectively. Note that the fields resulting from the TE excitation have been scaled (scale factor indicated on graphs).

Fig. 3
Fig. 3

Normalized intensity profiles for a 200-nm period grating at varying depths with TM excitation (a) at the center of the grating, (b) at the exit plane of the grating, (c) 10 nm below the grating, (d) 20 nm below the grating, (e) 50 nm below the grating, (f) 100 nm below the grating.

Fig. 4
Fig. 4

Contrast as a function of depth from the mask for gratings of various grating periods: (a) 200 nm, (b) 140 nm, (c) 80 nm, (d) 20 nm. TM and TE excitation are the solid and dashed curves, respectively.

Fig. 5
Fig. 5

Half-contrast depth for the simulated gratings plotted as a function of period.

Fig. 6
Fig. 6

Intensity at the center of the aperture as a function of distance from the grating for periods (a) of 200 nm, (b) of 140 nm, (c) of 80 nm, (d) of 20 nm. TM and TE excitation are the solid and dashed curves, respectively.

Fig. 7
Fig. 7

Normalized intensity profiles for a 20-nm period grating with TM excitation (a) at the center of the grating, (b) at the exit plane of the grating, (c) 1 nm below the grating, (d) 2 nm below the grating, (e) 5 nm below the grating, (f) 10 nm below the grating.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V=Ia-IsIa+Is,

Metrics