Abstract

The choice of a balanced optical coherence tomography (OCT) configuration versus an unbalanced OCT configuration with optimized reference-arm attenuation is discussed. The choice depends on the receiver noise, the fiber-end reflection R, and the power to the object. When OCT is used to investigate biological tissue an equivalent R′ can be evaluated as the compound reflected light from tissue. In this case an additional parameter has to be considered: the confocal optical sectioning interval of the OCT system.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. V. Sorin, D. M. Baney, “A simple intensity noise reduction technique for optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4, 1404–1406 (1992).
    [CrossRef]
  2. A. H. Takada, K. Yukimatsu, “Phase-noise and shot-noise operations of low coherence optical time domain reflectometry,” Appl. Phys. Lett. 59, 2483–2485 (1991).
    [CrossRef]
  3. K. Takada, “Noise in optical low-coherence reflectometry,” IEEE J. Quantum. Electron. 34, 1098–1108 (1998).
    [CrossRef]
  4. J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Select. Topics Quantum Electron. 2, 1017–1028 (1996).
    [CrossRef]
  5. E. A. Swanson, D. Huang, M. R. Lee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
    [CrossRef] [PubMed]
  6. J. A. Izaat, M. R. Hee, G. M. Owen, E. A. Swanson, J. G. Fujimoto, “Optical coherence in microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994).
    [CrossRef]
  7. A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1) , 12–20 (1998).
    [CrossRef]
  8. A. Gh. Podoleanu, D. A. Jackson, “Noise analysis of a combined optical coherence tomograph and confocal scanning ophthalmoscope,” Appl. Opt. 38, 2116–2127 (1999).
    [CrossRef]
  9. P. R. Morkel, R. I. Laming, D. N. Payne, “Noise characteristics of high-power doped-fiber superluminescent sources,” Electron. Lett. 26, 96–97 (1990).
    [CrossRef]
  10. R. Ulrich, S. C. Rashleigh, “Beam-to-fiber coupling with low standing wave ratio,” Appl. Opt. 19, 2453–2456 (1980).
    [CrossRef] [PubMed]
  11. American National Standards Institute, “Safe use of lasers,” (American National Standards Institute, New York, 1986).
  12. Nirvana balanced photodetector in 1999–2000 (New Focus, Inc., 2630 Walsh Avenue, Santa Clara, Calif. 95051-9959), Vol. 10.
  13. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ungarunyawee, J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219–229 (1998), http://epubs.osa.org/opticsexpress .
    [CrossRef] [PubMed]
  14. M. Rajadhyaksha, R. R. Anderson, R. Webb, “Video-rate confocal scanning laser microscope for imaging human tissues in vivo,” Appl. Opt. 38, 2105–2115 (1999).
    [CrossRef]
  15. J. G. Burnett, S. McRoberts, N. R. King, D. G. Luke, R. McBride, A. H. Greenaway, “Birefringence compensated cylindrical piezoelectric fibre phase modulator,” J. Mod. Opt. 43, 583–589 (1996).
    [CrossRef]
  16. T. Hellmuth, J. Wei, “Optical coherence tomography corneal mapping apparatus,” U.S. patent5,491,524 (13February1996).
  17. J. Szydlo, N. Delachenal, R. Gianotti, R. Walti, H. Bleuler, R. P. Salathe, “Air-turbine driven optical low-coherence reflectometry at 28.6-kHz scan repetition rate,” Opt. Commun. 154, 1–4 (1998).
    [CrossRef]
  18. G. J. Tearney, B. E. Bouma, J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997).
    [CrossRef]
  19. J. M. Schmitt, A. Knüttel, A. Gandjbakhche, R. F. Bonner, “Optical characterization of dense tissue using low-coherence interferometry,” in Holography, Interferometry, and Optical Pattern Recognition in Biomedicine III, H. Podbielska, ed., Proc. SPIE1889, 197–211 (1993).
    [CrossRef]
  20. Y. Pan, R. Birngruber, J. Rosperich, R. Engelhardt, “Low-coherence optical tomography in turbid tissue: theoretical analysis,” Appl. Opt. 34, 6564–6574 (1995).
    [CrossRef] [PubMed]
  21. J. M. Schmitt, A. Knüttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997).
    [CrossRef]
  22. M. Kempe, A. Z. Genack, W. Rudolph, P. Dorn, “Ballistic and diffuse light detection in confocal and heterodyne imaging systems,” J. Opt. Soc. Am. A 14, 216–223 (1997).
    [CrossRef]
  23. C. L. Smithpeter, A. K. Dunn, A. J. Welch, R. Richards-Kortum, “Penetration depth limits of in vivo confocal reflectance imaging,” Appl. Opt. 37, 2749–2754 (1998).
    [CrossRef]
  24. F. C. Delori, K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989).
    [CrossRef] [PubMed]

1999

1998

J. Szydlo, N. Delachenal, R. Gianotti, R. Walti, H. Bleuler, R. P. Salathe, “Air-turbine driven optical low-coherence reflectometry at 28.6-kHz scan repetition rate,” Opt. Commun. 154, 1–4 (1998).
[CrossRef]

C. L. Smithpeter, A. K. Dunn, A. J. Welch, R. Richards-Kortum, “Penetration depth limits of in vivo confocal reflectance imaging,” Appl. Opt. 37, 2749–2754 (1998).
[CrossRef]

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1) , 12–20 (1998).
[CrossRef]

K. Takada, “Noise in optical low-coherence reflectometry,” IEEE J. Quantum. Electron. 34, 1098–1108 (1998).
[CrossRef]

A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ungarunyawee, J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219–229 (1998), http://epubs.osa.org/opticsexpress .
[CrossRef] [PubMed]

1997

1996

J. G. Burnett, S. McRoberts, N. R. King, D. G. Luke, R. McBride, A. H. Greenaway, “Birefringence compensated cylindrical piezoelectric fibre phase modulator,” J. Mod. Opt. 43, 583–589 (1996).
[CrossRef]

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Select. Topics Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

1995

1994

1992

E. A. Swanson, D. Huang, M. R. Lee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
[CrossRef] [PubMed]

W. V. Sorin, D. M. Baney, “A simple intensity noise reduction technique for optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4, 1404–1406 (1992).
[CrossRef]

1991

A. H. Takada, K. Yukimatsu, “Phase-noise and shot-noise operations of low coherence optical time domain reflectometry,” Appl. Phys. Lett. 59, 2483–2485 (1991).
[CrossRef]

1990

P. R. Morkel, R. I. Laming, D. N. Payne, “Noise characteristics of high-power doped-fiber superluminescent sources,” Electron. Lett. 26, 96–97 (1990).
[CrossRef]

1989

1980

Anderson, R. R.

Baney, D. M.

W. V. Sorin, D. M. Baney, “A simple intensity noise reduction technique for optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4, 1404–1406 (1992).
[CrossRef]

Birngruber, R.

Bleuler, H.

J. Szydlo, N. Delachenal, R. Gianotti, R. Walti, H. Bleuler, R. P. Salathe, “Air-turbine driven optical low-coherence reflectometry at 28.6-kHz scan repetition rate,” Opt. Commun. 154, 1–4 (1998).
[CrossRef]

Bonner, R. F.

J. M. Schmitt, A. Knüttel, A. Gandjbakhche, R. F. Bonner, “Optical characterization of dense tissue using low-coherence interferometry,” in Holography, Interferometry, and Optical Pattern Recognition in Biomedicine III, H. Podbielska, ed., Proc. SPIE1889, 197–211 (1993).
[CrossRef]

Bouma, B. E.

Burnett, J. G.

J. G. Burnett, S. McRoberts, N. R. King, D. G. Luke, R. McBride, A. H. Greenaway, “Birefringence compensated cylindrical piezoelectric fibre phase modulator,” J. Mod. Opt. 43, 583–589 (1996).
[CrossRef]

Delachenal, N.

J. Szydlo, N. Delachenal, R. Gianotti, R. Walti, H. Bleuler, R. P. Salathe, “Air-turbine driven optical low-coherence reflectometry at 28.6-kHz scan repetition rate,” Opt. Commun. 154, 1–4 (1998).
[CrossRef]

Delori, F. C.

Dobre, G. M.

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1) , 12–20 (1998).
[CrossRef]

Dorn, P.

Dunn, A. K.

Engelhardt, R.

Fitzke, F.

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1) , 12–20 (1998).
[CrossRef]

Fujimoto, J. G.

Gandjbakhche, A.

J. M. Schmitt, A. Knüttel, A. Gandjbakhche, R. F. Bonner, “Optical characterization of dense tissue using low-coherence interferometry,” in Holography, Interferometry, and Optical Pattern Recognition in Biomedicine III, H. Podbielska, ed., Proc. SPIE1889, 197–211 (1993).
[CrossRef]

Genack, A. Z.

Gianotti, R.

J. Szydlo, N. Delachenal, R. Gianotti, R. Walti, H. Bleuler, R. P. Salathe, “Air-turbine driven optical low-coherence reflectometry at 28.6-kHz scan repetition rate,” Opt. Commun. 154, 1–4 (1998).
[CrossRef]

Greenaway, A. H.

J. G. Burnett, S. McRoberts, N. R. King, D. G. Luke, R. McBride, A. H. Greenaway, “Birefringence compensated cylindrical piezoelectric fibre phase modulator,” J. Mod. Opt. 43, 583–589 (1996).
[CrossRef]

Hee, M. R.

Hellmuth, T.

T. Hellmuth, J. Wei, “Optical coherence tomography corneal mapping apparatus,” U.S. patent5,491,524 (13February1996).

Huang, D.

Izaat, J. A.

Izatt, J. A.

A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ungarunyawee, J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219–229 (1998), http://epubs.osa.org/opticsexpress .
[CrossRef] [PubMed]

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Select. Topics Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Jackson, D. A.

A. Gh. Podoleanu, D. A. Jackson, “Noise analysis of a combined optical coherence tomograph and confocal scanning ophthalmoscope,” Appl. Opt. 38, 2116–2127 (1999).
[CrossRef]

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1) , 12–20 (1998).
[CrossRef]

Kempe, M.

King, N. R.

J. G. Burnett, S. McRoberts, N. R. King, D. G. Luke, R. McBride, A. H. Greenaway, “Birefringence compensated cylindrical piezoelectric fibre phase modulator,” J. Mod. Opt. 43, 583–589 (1996).
[CrossRef]

Knüttel, A.

J. M. Schmitt, A. Knüttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997).
[CrossRef]

J. M. Schmitt, A. Knüttel, A. Gandjbakhche, R. F. Bonner, “Optical characterization of dense tissue using low-coherence interferometry,” in Holography, Interferometry, and Optical Pattern Recognition in Biomedicine III, H. Podbielska, ed., Proc. SPIE1889, 197–211 (1993).
[CrossRef]

Kobayashi, K.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Select. Topics Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Kulkarni, M. D.

A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ungarunyawee, J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219–229 (1998), http://epubs.osa.org/opticsexpress .
[CrossRef] [PubMed]

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Select. Topics Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Laming, R. I.

P. R. Morkel, R. I. Laming, D. N. Payne, “Noise characteristics of high-power doped-fiber superluminescent sources,” Electron. Lett. 26, 96–97 (1990).
[CrossRef]

Lee, M. R.

Lin, C. P.

Luke, D. G.

J. G. Burnett, S. McRoberts, N. R. King, D. G. Luke, R. McBride, A. H. Greenaway, “Birefringence compensated cylindrical piezoelectric fibre phase modulator,” J. Mod. Opt. 43, 583–589 (1996).
[CrossRef]

McBride, R.

J. G. Burnett, S. McRoberts, N. R. King, D. G. Luke, R. McBride, A. H. Greenaway, “Birefringence compensated cylindrical piezoelectric fibre phase modulator,” J. Mod. Opt. 43, 583–589 (1996).
[CrossRef]

McRoberts, S.

J. G. Burnett, S. McRoberts, N. R. King, D. G. Luke, R. McBride, A. H. Greenaway, “Birefringence compensated cylindrical piezoelectric fibre phase modulator,” J. Mod. Opt. 43, 583–589 (1996).
[CrossRef]

Morkel, P. R.

P. R. Morkel, R. I. Laming, D. N. Payne, “Noise characteristics of high-power doped-fiber superluminescent sources,” Electron. Lett. 26, 96–97 (1990).
[CrossRef]

Owen, G. M.

Pan, Y.

Payne, D. N.

P. R. Morkel, R. I. Laming, D. N. Payne, “Noise characteristics of high-power doped-fiber superluminescent sources,” Electron. Lett. 26, 96–97 (1990).
[CrossRef]

Pflibsen, K. P.

Podoleanu, A. Gh.

A. Gh. Podoleanu, D. A. Jackson, “Noise analysis of a combined optical coherence tomograph and confocal scanning ophthalmoscope,” Appl. Opt. 38, 2116–2127 (1999).
[CrossRef]

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1) , 12–20 (1998).
[CrossRef]

Puliafito, C. A.

Rajadhyaksha, M.

Rashleigh, S. C.

Richards-Kortum, R.

Rollins, A. M.

Rosperich, J.

Rudolph, W.

Salathe, R. P.

J. Szydlo, N. Delachenal, R. Gianotti, R. Walti, H. Bleuler, R. P. Salathe, “Air-turbine driven optical low-coherence reflectometry at 28.6-kHz scan repetition rate,” Opt. Commun. 154, 1–4 (1998).
[CrossRef]

Schmitt, J. M.

J. M. Schmitt, A. Knüttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997).
[CrossRef]

J. M. Schmitt, A. Knüttel, A. Gandjbakhche, R. F. Bonner, “Optical characterization of dense tissue using low-coherence interferometry,” in Holography, Interferometry, and Optical Pattern Recognition in Biomedicine III, H. Podbielska, ed., Proc. SPIE1889, 197–211 (1993).
[CrossRef]

Seeger, M.

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1) , 12–20 (1998).
[CrossRef]

Sivak, M. V.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Select. Topics Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Smithpeter, C. L.

Sorin, W. V.

W. V. Sorin, D. M. Baney, “A simple intensity noise reduction technique for optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4, 1404–1406 (1992).
[CrossRef]

Swanson, E. A.

Szydlo, J.

J. Szydlo, N. Delachenal, R. Gianotti, R. Walti, H. Bleuler, R. P. Salathe, “Air-turbine driven optical low-coherence reflectometry at 28.6-kHz scan repetition rate,” Opt. Commun. 154, 1–4 (1998).
[CrossRef]

Takada, A. H.

A. H. Takada, K. Yukimatsu, “Phase-noise and shot-noise operations of low coherence optical time domain reflectometry,” Appl. Phys. Lett. 59, 2483–2485 (1991).
[CrossRef]

Takada, K.

K. Takada, “Noise in optical low-coherence reflectometry,” IEEE J. Quantum. Electron. 34, 1098–1108 (1998).
[CrossRef]

Tearney, G. J.

Ulrich, R.

Ungarunyawee, R.

Walti, R.

J. Szydlo, N. Delachenal, R. Gianotti, R. Walti, H. Bleuler, R. P. Salathe, “Air-turbine driven optical low-coherence reflectometry at 28.6-kHz scan repetition rate,” Opt. Commun. 154, 1–4 (1998).
[CrossRef]

Wang, H.-W.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Select. Topics Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Webb, D. J.

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1) , 12–20 (1998).
[CrossRef]

Webb, R.

Wei, J.

T. Hellmuth, J. Wei, “Optical coherence tomography corneal mapping apparatus,” U.S. patent5,491,524 (13February1996).

Welch, A. J.

Yazdanfar, S.

Yukimatsu, K.

A. H. Takada, K. Yukimatsu, “Phase-noise and shot-noise operations of low coherence optical time domain reflectometry,” Appl. Phys. Lett. 59, 2483–2485 (1991).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

A. H. Takada, K. Yukimatsu, “Phase-noise and shot-noise operations of low coherence optical time domain reflectometry,” Appl. Phys. Lett. 59, 2483–2485 (1991).
[CrossRef]

Electron. Lett.

P. R. Morkel, R. I. Laming, D. N. Payne, “Noise characteristics of high-power doped-fiber superluminescent sources,” Electron. Lett. 26, 96–97 (1990).
[CrossRef]

IEEE J. Quantum. Electron.

K. Takada, “Noise in optical low-coherence reflectometry,” IEEE J. Quantum. Electron. 34, 1098–1108 (1998).
[CrossRef]

IEEE J. Select. Topics Quantum Electron.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Select. Topics Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

IEEE Photon. Technol. Lett.

W. V. Sorin, D. M. Baney, “A simple intensity noise reduction technique for optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4, 1404–1406 (1992).
[CrossRef]

J. Biomed. Opt.

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1) , 12–20 (1998).
[CrossRef]

J. Mod. Opt.

J. G. Burnett, S. McRoberts, N. R. King, D. G. Luke, R. McBride, A. H. Greenaway, “Birefringence compensated cylindrical piezoelectric fibre phase modulator,” J. Mod. Opt. 43, 583–589 (1996).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Commun.

J. Szydlo, N. Delachenal, R. Gianotti, R. Walti, H. Bleuler, R. P. Salathe, “Air-turbine driven optical low-coherence reflectometry at 28.6-kHz scan repetition rate,” Opt. Commun. 154, 1–4 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Other

J. M. Schmitt, A. Knüttel, A. Gandjbakhche, R. F. Bonner, “Optical characterization of dense tissue using low-coherence interferometry,” in Holography, Interferometry, and Optical Pattern Recognition in Biomedicine III, H. Podbielska, ed., Proc. SPIE1889, 197–211 (1993).
[CrossRef]

T. Hellmuth, J. Wei, “Optical coherence tomography corneal mapping apparatus,” U.S. patent5,491,524 (13February1996).

American National Standards Institute, “Safe use of lasers,” (American National Standards Institute, New York, 1986).

Nirvana balanced photodetector in 1999–2000 (New Focus, Inc., 2630 Walsh Avenue, Santa Clara, Calif. 95051-9959), Vol. 10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Unbalanced and (b) balanced OCT setups. OUT, object under test.

Fig. 2
Fig. 2

SNR plotted versus the optical power P to the object for the unbalanced configuration: (a) The fiber ends are straight cut with R = 0.04. (b) The fiber ends are cut at an angle with R = 0.0004.

Fig. 3
Fig. 3

SNR plotted versus the optical power P to the object for the balanced configuration: (a) The fiber ends are straight cut with R = 0.04. (b) The fiber ends are cut at an angle with R = 0.0004.

Fig. 4
Fig. 4

Dependence of the SNR on the attenuation σ1 introduced by the longitudinal scanner in the unbalanced configuration. Optimization by a reduction in the power in the reference arm is possible for R L = 100 kΩ, 100 MΩ but is not possible for R = 100 Ω. (a) The fiber ends are straight cut with R = 0.04. (b) The fiber ends are cut at an angle with R = 0.0004.

Fig. 5
Fig. 5

Comparison of the SNR’s that are achievable with the balanced [Eq. (7)] configuration (solid curve) and the unbalanced [Eq. (15)] configuration (dotted curve) with optimized reference power. (a) The fiber ends are straight cut with R = 0.04. (b) The fiber ends are cut at an angle with R = 0.0004.

Fig. 6
Fig. 6

Dependence of the improvement coefficient I given by Eq. (17) on the load resistance, which is inversely proportional to the receiver noise. (a) The fiber ends are straight cut with R = 0.04. (b) The fiber ends are cut at an angle with R = 0.0004. Parameter values: Curve (A): P = 100 µW, γ1 = γ = 0.5, σ = 0.5, and (R L )min = 29 Ω. Curve (B): P = 1000 µW, γ1 = γ = 0.5, σ = 0.5, and (R L )min = 2.9 Ω. Curve (C): P = 1000 µW, γ1 = γ = 0.9, σ = 0.5, and (R L )min = 0.9 Ω. Curve (D): P = 1000 µW, γ1 = γ = 0.9, σ = 1, and (R L )min = 0.9 Ω. Curve (E): P = 1000 µW, γ1 = 0.5, γ = 0.9, σ = 1, and (R L )min = 29 Ω. The solid curves represent the denominator in Eq. (17) as given by Eq. (15). The dotted curves represent the interval R L < (R L )min for which optimization of the unbalanced configuration is not possible and the SNR is evaluated by use of σ1 = 1 [see the text and Eq. (4)].

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

ΔIp2=2eBI+1+Π2BΔveff I2=ΔIsh2+ΔIex2.
ΔIp2=2eBI+21+Π2BΔveff IFERIREF=ΔIsh2+ΔIex2.
I=ασ1+Rγ1P,
SN=G1σ1PPA1σ1+RP2+D1σ1+RP+C1B,
G1=2αγ12O,
A1=α21+Π2Δveff-1γ12,
D1=2eαγ1,
C1=ΔIa2/B=4kT/RL,
IIREF=αγσP,
IFER=αRγP,
SN=GP2AP2+DP+CB,
G=2αγ2O,
A=2α21+Π2Δveff-1Rγ2,
D=2eαγ,
C=1-γσ ΔIa2/B=4k1-γT1-γRLσ.
BOSN1,max=Δveff1+Π22σ1σ1+R2,
BOSN1,max=Δveff2R1+Π2.
BOSNmax=ΔveffR1+Π2.
σ1+RPlim=D1+D12+4A1C11/22A1.
Plim=D+D2+4AC1/22A.
σ1opt=R2+C1A1P2+RD1A1P1/2.
BSN1=G1P2A1C1+RPD1+RA1P1/2+D1+2RA1P.
RLmin=4kTσ1max2-R21+Π2αγ1P2Δveff-1-2eαγ1RP.
I=BOSNBal,PBOSNUnbal,Popt.
RL  4kT1+Π2e2Δveff,
ΔIa2  e2ΔveffB.
B SN=G1PD1=αγ1PO,
B=1CRL,
IGG1D1D=γγ1,
Iγ2γ121-γσσ1.

Metrics