Abstract

Photon correlation spectroscopy autocorrelation spectra were measured for gold nanocrystal superlattice colloids under several intensities of an incident laser beam. Thermal blooming in the colloid shifted the correlation spectra toward smaller times. A second cumulant term in the fitting curve proved effective to correct for the thermal blooming effect to yield the correct particle size.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. B. Weiner, “Twenty seven years of QELS: a review of the advantages and disadvantages of particle sizing with QELs,” in Particle Size Analysis, N. G. Stanley-Wood, R. W. Lines, eds. (Royal Society of Chemistry, Cambridge, 1992), pp. 173–185.
    [CrossRef]
  2. J. P. Gorden, R. C. C. Leite, R. S. Moore, S. P. Porto, J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965); J. R. Whinnery, D. T. Miller, F. Dabby, “Thermal convection and spherical aberration distortion of laser beams in low-loss liquids,” IEEE J. Quantum Electron. QE-3, 382–383 (1967); W. R. Callen, B. G. Huth, R. H. Pantell, “Optical patterns of thermally self-defocused light,” Appl. Phys. Lett. 11, 103–105 (1967).
    [CrossRef]
  3. R. Anthore, P. Flament, G. Gouesbet, M. Rhazi, M. E. Weill, “Interaction between a laser beam and some liquid media,” Appl. Opt. 21, 2–4 (1982); G. Gouesbet, “Simple model for bifurcations ranging up to chaos in thermal lens oscillations and associated phenomena,” Phys. Rev. A 42, 5928–5945 (1990).
    [CrossRef] [PubMed]
  4. L. P. Schelonka, M. A. Kramer, “Theory of the thermal blooming correction by phase conjugation,” Opt. Lett. 14, 949–951 (1989); C. J. Werrerer, L. P. Schelonka, M. A. Kramer, “Correction of thermal blooming by optical phase conjugation,” Opt. Lett. 14, 874–876 (1989).
    [CrossRef] [PubMed]
  5. X. M. Lin, C. M. Sorensen, K. J. Klabunde, “Ligand induced gold nanocrystal super-lattice formation in colloidal solution,” Chem. Mater. (to be published).
  6. T. W. Taylor, C. M. Sorensen, “Gaussian beam effects on the photon correlation spectrum from a flowing Brownian motion system,” Appl. Opt. 25, 2421–2426 (1986).
    [CrossRef] [PubMed]

1989 (1)

1986 (1)

1982 (1)

1965 (1)

J. P. Gorden, R. C. C. Leite, R. S. Moore, S. P. Porto, J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965); J. R. Whinnery, D. T. Miller, F. Dabby, “Thermal convection and spherical aberration distortion of laser beams in low-loss liquids,” IEEE J. Quantum Electron. QE-3, 382–383 (1967); W. R. Callen, B. G. Huth, R. H. Pantell, “Optical patterns of thermally self-defocused light,” Appl. Phys. Lett. 11, 103–105 (1967).
[CrossRef]

Anthore, R.

Flament, P.

Gorden, J. P.

J. P. Gorden, R. C. C. Leite, R. S. Moore, S. P. Porto, J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965); J. R. Whinnery, D. T. Miller, F. Dabby, “Thermal convection and spherical aberration distortion of laser beams in low-loss liquids,” IEEE J. Quantum Electron. QE-3, 382–383 (1967); W. R. Callen, B. G. Huth, R. H. Pantell, “Optical patterns of thermally self-defocused light,” Appl. Phys. Lett. 11, 103–105 (1967).
[CrossRef]

Gouesbet, G.

Klabunde, K. J.

X. M. Lin, C. M. Sorensen, K. J. Klabunde, “Ligand induced gold nanocrystal super-lattice formation in colloidal solution,” Chem. Mater. (to be published).

Kramer, M. A.

Leite, R. C. C.

J. P. Gorden, R. C. C. Leite, R. S. Moore, S. P. Porto, J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965); J. R. Whinnery, D. T. Miller, F. Dabby, “Thermal convection and spherical aberration distortion of laser beams in low-loss liquids,” IEEE J. Quantum Electron. QE-3, 382–383 (1967); W. R. Callen, B. G. Huth, R. H. Pantell, “Optical patterns of thermally self-defocused light,” Appl. Phys. Lett. 11, 103–105 (1967).
[CrossRef]

Lin, X. M.

X. M. Lin, C. M. Sorensen, K. J. Klabunde, “Ligand induced gold nanocrystal super-lattice formation in colloidal solution,” Chem. Mater. (to be published).

Moore, R. S.

J. P. Gorden, R. C. C. Leite, R. S. Moore, S. P. Porto, J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965); J. R. Whinnery, D. T. Miller, F. Dabby, “Thermal convection and spherical aberration distortion of laser beams in low-loss liquids,” IEEE J. Quantum Electron. QE-3, 382–383 (1967); W. R. Callen, B. G. Huth, R. H. Pantell, “Optical patterns of thermally self-defocused light,” Appl. Phys. Lett. 11, 103–105 (1967).
[CrossRef]

Porto, S. P.

J. P. Gorden, R. C. C. Leite, R. S. Moore, S. P. Porto, J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965); J. R. Whinnery, D. T. Miller, F. Dabby, “Thermal convection and spherical aberration distortion of laser beams in low-loss liquids,” IEEE J. Quantum Electron. QE-3, 382–383 (1967); W. R. Callen, B. G. Huth, R. H. Pantell, “Optical patterns of thermally self-defocused light,” Appl. Phys. Lett. 11, 103–105 (1967).
[CrossRef]

Rhazi, M.

Schelonka, L. P.

Sorensen, C. M.

T. W. Taylor, C. M. Sorensen, “Gaussian beam effects on the photon correlation spectrum from a flowing Brownian motion system,” Appl. Opt. 25, 2421–2426 (1986).
[CrossRef] [PubMed]

X. M. Lin, C. M. Sorensen, K. J. Klabunde, “Ligand induced gold nanocrystal super-lattice formation in colloidal solution,” Chem. Mater. (to be published).

Taylor, T. W.

Weill, M. E.

Weiner, B. B.

B. B. Weiner, “Twenty seven years of QELS: a review of the advantages and disadvantages of particle sizing with QELs,” in Particle Size Analysis, N. G. Stanley-Wood, R. W. Lines, eds. (Royal Society of Chemistry, Cambridge, 1992), pp. 173–185.
[CrossRef]

Whinnery, J. R.

J. P. Gorden, R. C. C. Leite, R. S. Moore, S. P. Porto, J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965); J. R. Whinnery, D. T. Miller, F. Dabby, “Thermal convection and spherical aberration distortion of laser beams in low-loss liquids,” IEEE J. Quantum Electron. QE-3, 382–383 (1967); W. R. Callen, B. G. Huth, R. H. Pantell, “Optical patterns of thermally self-defocused light,” Appl. Phys. Lett. 11, 103–105 (1967).
[CrossRef]

Appl. Opt. (2)

J. Appl. Phys. (1)

J. P. Gorden, R. C. C. Leite, R. S. Moore, S. P. Porto, J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965); J. R. Whinnery, D. T. Miller, F. Dabby, “Thermal convection and spherical aberration distortion of laser beams in low-loss liquids,” IEEE J. Quantum Electron. QE-3, 382–383 (1967); W. R. Callen, B. G. Huth, R. H. Pantell, “Optical patterns of thermally self-defocused light,” Appl. Phys. Lett. 11, 103–105 (1967).
[CrossRef]

Opt. Lett. (1)

Other (2)

X. M. Lin, C. M. Sorensen, K. J. Klabunde, “Ligand induced gold nanocrystal super-lattice formation in colloidal solution,” Chem. Mater. (to be published).

B. B. Weiner, “Twenty seven years of QELS: a review of the advantages and disadvantages of particle sizing with QELs,” in Particle Size Analysis, N. G. Stanley-Wood, R. W. Lines, eds. (Royal Society of Chemistry, Cambridge, 1992), pp. 173–185.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

TEM image of gold NCS’s synthesized in didodecyldimethylammonium bromide–water–toluene inverse micelles.

Fig. 2
Fig. 2

Correlation function of gold NCS colloid under several intensities of the incident laser beam. Points, experimental data; dashed curves, fitting curves with an exponential decay function as shown in Eq. (1).

Fig. 3
Fig. 3

Comparison of the decay times obtained by a single exponential fitting curve and two-cumulant fitting curves. Single exponential fit, circles with dashed curve; two-cumulant fit, first cumulant decay time τ c (squares with solid curve) and second cumulant decay time τ f (triangles with solid curve).

Fig. 4
Fig. 4

The same experimental data as in Fig. 2 but fitted with a two-cumulant decay function as shown in Eq. (3).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ct=B+A exp-t/τc.
τc=2Dq2-1,
Ct=B+A exp-t/τc-t2/τf2,

Metrics