Abstract

For the efficient operation of a cavity ringdown spectroscopy (CRDS) system utilized with a continuous-wave (cw) laser, we numerically analyze the coupling efficiency of a cw laser to a ringdown cavity in terms of changes in the scanning rate, the laser linewidth, and the mirror reflectivity. We also demonstrate a new simple design for a CRDS system that can produce a CRDS signal with only a piezoelectric transducer (PZT), without the acousto-optic modulator that is usually adopted to switch off the cw laser beam that enters the cavity. Furthermore, we investigate the feasibility of the cw CRDS technique with a fast-scanning PZT by recording a CRDS spectrum of acetylene overtones. The detection sensitivity that corresponds to the noise-equivalent absorption is found to be ∼3 × 10-9/cm.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. O’Keefe, D. A. G. Deacon, “Cavity ringdown optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
    [CrossRef]
  2. A. O’Keefe, J. J. Scherer, A. L. Cooksy, R. Sheeks, J. Heath, R. J. Saykally, “Cavity ringdown dye laser spectroscopy of jet-cooled metal clusters: Cu2 and Cu3,” Chem. Phys. Lett. 172, 214–218 (1990).
    [CrossRef]
  3. T. Yu, M. C. Lin, “Kinetics of phenyl radical reactions studied by the cavity-ringdown method,” J. Am. Chem. Soc. 115, 4371–4372 (1993).
    [CrossRef]
  4. K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–372 (1994).
    [CrossRef]
  5. D. Romanini, K. K. Lehmann, “Cavity ringdown overtone spectroscopy of HCN, H13CN and HC15N,” J. Chem. Phys. 102, 633–642 (1995).
    [CrossRef]
  6. R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity ringdown spectroscopy,” Rev. Sci. Instrum. 66, 2821–2827 (1995).
    [CrossRef]
  7. P. Zalicki, Y. Ma, R. N. Zare, E. H. Wahl, J. R. Dadamio, T. G. Owano, “Methyl radical measurement by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
    [CrossRef]
  8. D. Romanini, K. K. Lehmann, “Calculation of the Herman–Wallis in Π–Σ vibrational overtone transitions in a linear molecule: comparison with HCN experimental results,” J. Chem. Phys. 105, 68–80 (1996).
    [CrossRef]
  9. E. H. Wahl, T. G. Owano, C. H. Kruger, P. Zalicki, Y. Ma, R. N. Zare, “Measurement of absolute CH3 concentration in a hot-filament reactor using cavity ringdown spectroscopy,” Diamond Related Mater. 5, 373–377 (1996).
    [CrossRef]
  10. L. Zhu, D. Kellis, C. Ding, “Photolysis of glyoxal at 193, 248, 308 and 351 nm,” Chem. Phys. Lett. 257, 487–491 (1996).
    [CrossRef]
  11. G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, A. M. Wodtke, “Coherent cavity ringdown spectroscopy,” Chem. Phys. Lett. 217, 112–116 (1994).
    [CrossRef]
  12. J. J. Scherer, D. J. Rakestraw, “Cavity ringdown laser absorption spectroscopy detection of formyl (HCO) radical in a low pressure flame,” Chem. Phys. Lett. 265, 169–176 (1997).
    [CrossRef]
  13. T. Etzkorn, J. Fitzer, S. Muris, J. Wolfrum, “Determination of absolute methyl- and hydroxyl-radical concentrations in a low pressure methane–oxygen flame,” Chem. Phys. Lett. 208, 307–310 (1993).
    [CrossRef]
  14. J. T. Hodges, J. P. Looney, R. D. van Zee, “Laser bandwidth effects in quantitative cavity ringdown spectroscopy,” Appl. Opt. 35, 4112–4116 (1996).
    [CrossRef] [PubMed]
  15. J. M. Herbelin, J. A. McKay, M. A. Kwok, R. H. Ueunten, D. S. Urevig, D. J. Spencer, D. J. Benard, “Sensitive measurement of photon lifetime and true reflectance in an optical cavity by a phase-shift method,” Appl. Opt. 19, 144–147 (1980).
    [CrossRef] [PubMed]
  16. D. Z. Anderson, J. C. Frisch, C. S. Masser, “Mirror reflectometer based on optical cavity decay time,” Appl. Opt. 23, 1238–1245 (1984).
    [CrossRef] [PubMed]
  17. M. Billardon, M. E. Couprie, J. M. Ortega, M. Velghe, “Fabry–Perot effects in the exponential decay and phase shift reflectivity measurement methods,” Appl. Opt. 30, 344–351 (1991).
    [CrossRef] [PubMed]
  18. P. Zalicki, R. N. Zare, “Cavity ringdown spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
    [CrossRef]
  19. K. K. Lehmann, D. Romanini, “The superposition principle and cavity ringdown spectroscopy,” J. Chem. Phys. 105, 10,263–10,277 (1996).
    [CrossRef]
  20. J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ringdown cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10,278–10,287 (1996).
    [CrossRef]
  21. J. Martin, B. A. Paldus, P. Zalicki, E. H. Wahl, T. G. Owano, J. S. Harris, C. H. Kruger, R. N. Zare, “Cavity ring-down spectroscopy with Fourier-transform-limited light pulses,” Chem. Phys. Lett. 258, 63–70 (1996).
    [CrossRef]
  22. D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “Cw cavity ringdown spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
    [CrossRef]
  23. D. Romanini, A. A. Kachanov, F. Stoeckel, “Diode laser cavity ringdown spectroscopy,” Chem. Phys. Lett. 270, 538–545 (1997).
    [CrossRef]
  24. D. Romanini, A. A. Kachanov, F. Stoeckel, “Cavity ring-down spectroscopy: broadband absolute absorption measurements,” Chem. Phys. Lett. 270, 546–550 (1997).
    [CrossRef]
  25. B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ringdown spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
    [CrossRef]
  26. Z. Li, R. G. T. Bennett, G. E. Stedman, “Swept-frequency induced optical cavity ringing,” Opt. Commun. 86, 51–57 (1991).
    [CrossRef]
  27. Z. Li, G. E. Stedman, H. R. Bilger, “Asymmetric response profile of a scanning Fabry–Perot interferometer,” Opt. Commun. 100, 240–246 (1993).
    [CrossRef]
  28. K. An, C. Yang, R. R. Dasari, M. S. Feld, “Cavity ringdown technique and its application to the measurement of ultraslow velocities,” Opt. Lett. 20, 1068–1070 (1995).
    [CrossRef]
  29. J. Poirson, F. Bretenaker, M. Vallet, A. L. Floch, “Analytical and experimental study of ringing effects in a Fabry–Perot cavity. Application to the measurement of high finesse,” J. Opt. Soc. Am. B 14, 2811–2817 (1997).
    [CrossRef]
  30. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
    [CrossRef]
  31. D. Romanini, K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993).
    [CrossRef]

1998 (1)

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ringdown spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

1997 (5)

J. Poirson, F. Bretenaker, M. Vallet, A. L. Floch, “Analytical and experimental study of ringing effects in a Fabry–Perot cavity. Application to the measurement of high finesse,” J. Opt. Soc. Am. B 14, 2811–2817 (1997).
[CrossRef]

J. J. Scherer, D. J. Rakestraw, “Cavity ringdown laser absorption spectroscopy detection of formyl (HCO) radical in a low pressure flame,” Chem. Phys. Lett. 265, 169–176 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “Cw cavity ringdown spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, F. Stoeckel, “Diode laser cavity ringdown spectroscopy,” Chem. Phys. Lett. 270, 538–545 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, F. Stoeckel, “Cavity ring-down spectroscopy: broadband absolute absorption measurements,” Chem. Phys. Lett. 270, 546–550 (1997).
[CrossRef]

1996 (7)

K. K. Lehmann, D. Romanini, “The superposition principle and cavity ringdown spectroscopy,” J. Chem. Phys. 105, 10,263–10,277 (1996).
[CrossRef]

J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ringdown cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10,278–10,287 (1996).
[CrossRef]

J. Martin, B. A. Paldus, P. Zalicki, E. H. Wahl, T. G. Owano, J. S. Harris, C. H. Kruger, R. N. Zare, “Cavity ring-down spectroscopy with Fourier-transform-limited light pulses,” Chem. Phys. Lett. 258, 63–70 (1996).
[CrossRef]

D. Romanini, K. K. Lehmann, “Calculation of the Herman–Wallis in Π–Σ vibrational overtone transitions in a linear molecule: comparison with HCN experimental results,” J. Chem. Phys. 105, 68–80 (1996).
[CrossRef]

E. H. Wahl, T. G. Owano, C. H. Kruger, P. Zalicki, Y. Ma, R. N. Zare, “Measurement of absolute CH3 concentration in a hot-filament reactor using cavity ringdown spectroscopy,” Diamond Related Mater. 5, 373–377 (1996).
[CrossRef]

L. Zhu, D. Kellis, C. Ding, “Photolysis of glyoxal at 193, 248, 308 and 351 nm,” Chem. Phys. Lett. 257, 487–491 (1996).
[CrossRef]

J. T. Hodges, J. P. Looney, R. D. van Zee, “Laser bandwidth effects in quantitative cavity ringdown spectroscopy,” Appl. Opt. 35, 4112–4116 (1996).
[CrossRef] [PubMed]

1995 (5)

K. An, C. Yang, R. R. Dasari, M. S. Feld, “Cavity ringdown technique and its application to the measurement of ultraslow velocities,” Opt. Lett. 20, 1068–1070 (1995).
[CrossRef]

P. Zalicki, R. N. Zare, “Cavity ringdown spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

D. Romanini, K. K. Lehmann, “Cavity ringdown overtone spectroscopy of HCN, H13CN and HC15N,” J. Chem. Phys. 102, 633–642 (1995).
[CrossRef]

R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity ringdown spectroscopy,” Rev. Sci. Instrum. 66, 2821–2827 (1995).
[CrossRef]

P. Zalicki, Y. Ma, R. N. Zare, E. H. Wahl, J. R. Dadamio, T. G. Owano, “Methyl radical measurement by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
[CrossRef]

1994 (2)

G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, A. M. Wodtke, “Coherent cavity ringdown spectroscopy,” Chem. Phys. Lett. 217, 112–116 (1994).
[CrossRef]

K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–372 (1994).
[CrossRef]

1993 (4)

T. Yu, M. C. Lin, “Kinetics of phenyl radical reactions studied by the cavity-ringdown method,” J. Am. Chem. Soc. 115, 4371–4372 (1993).
[CrossRef]

T. Etzkorn, J. Fitzer, S. Muris, J. Wolfrum, “Determination of absolute methyl- and hydroxyl-radical concentrations in a low pressure methane–oxygen flame,” Chem. Phys. Lett. 208, 307–310 (1993).
[CrossRef]

Z. Li, G. E. Stedman, H. R. Bilger, “Asymmetric response profile of a scanning Fabry–Perot interferometer,” Opt. Commun. 100, 240–246 (1993).
[CrossRef]

D. Romanini, K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993).
[CrossRef]

1991 (2)

1990 (1)

A. O’Keefe, J. J. Scherer, A. L. Cooksy, R. Sheeks, J. Heath, R. J. Saykally, “Cavity ringdown dye laser spectroscopy of jet-cooled metal clusters: Cu2 and Cu3,” Chem. Phys. Lett. 172, 214–218 (1990).
[CrossRef]

1988 (1)

A. O’Keefe, D. A. G. Deacon, “Cavity ringdown optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

1984 (1)

1980 (1)

An, K.

Anderson, D. Z.

Benard, D. J.

Bennett, R. G. T.

Z. Li, R. G. T. Bennett, G. E. Stedman, “Swept-frequency induced optical cavity ringing,” Opt. Commun. 86, 51–57 (1991).
[CrossRef]

Bilger, H. R.

Z. Li, G. E. Stedman, H. R. Bilger, “Asymmetric response profile of a scanning Fabry–Perot interferometer,” Opt. Commun. 100, 240–246 (1993).
[CrossRef]

Billardon, M.

Boogaarts, M. G. H.

R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity ringdown spectroscopy,” Rev. Sci. Instrum. 66, 2821–2827 (1995).
[CrossRef]

G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, A. M. Wodtke, “Coherent cavity ringdown spectroscopy,” Chem. Phys. Lett. 217, 112–116 (1994).
[CrossRef]

Bretenaker, F.

Cooksy, A. L.

A. O’Keefe, J. J. Scherer, A. L. Cooksy, R. Sheeks, J. Heath, R. J. Saykally, “Cavity ringdown dye laser spectroscopy of jet-cooled metal clusters: Cu2 and Cu3,” Chem. Phys. Lett. 172, 214–218 (1990).
[CrossRef]

Couprie, M. E.

Dadamio, J. R.

P. Zalicki, Y. Ma, R. N. Zare, E. H. Wahl, J. R. Dadamio, T. G. Owano, “Methyl radical measurement by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
[CrossRef]

Dasari, R. R.

de Labachelerie, M.

K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–372 (1994).
[CrossRef]

Deacon, D. A. G.

A. O’Keefe, D. A. G. Deacon, “Cavity ringdown optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Ding, C.

L. Zhu, D. Kellis, C. Ding, “Photolysis of glyoxal at 193, 248, 308 and 351 nm,” Chem. Phys. Lett. 257, 487–491 (1996).
[CrossRef]

Etzkorn, T.

T. Etzkorn, J. Fitzer, S. Muris, J. Wolfrum, “Determination of absolute methyl- and hydroxyl-radical concentrations in a low pressure methane–oxygen flame,” Chem. Phys. Lett. 208, 307–310 (1993).
[CrossRef]

Feld, M. S.

Fitzer, J.

T. Etzkorn, J. Fitzer, S. Muris, J. Wolfrum, “Determination of absolute methyl- and hydroxyl-radical concentrations in a low pressure methane–oxygen flame,” Chem. Phys. Lett. 208, 307–310 (1993).
[CrossRef]

Floch, A. L.

Frisch, J. C.

Harb, C. C.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ringdown spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

Harris, J. S.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ringdown spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

J. Martin, B. A. Paldus, P. Zalicki, E. H. Wahl, T. G. Owano, J. S. Harris, C. H. Kruger, R. N. Zare, “Cavity ring-down spectroscopy with Fourier-transform-limited light pulses,” Chem. Phys. Lett. 258, 63–70 (1996).
[CrossRef]

Heath, J.

A. O’Keefe, J. J. Scherer, A. L. Cooksy, R. Sheeks, J. Heath, R. J. Saykally, “Cavity ringdown dye laser spectroscopy of jet-cooled metal clusters: Cu2 and Cu3,” Chem. Phys. Lett. 172, 214–218 (1990).
[CrossRef]

Herbelin, J. M.

Hodges, J. T.

J. T. Hodges, J. P. Looney, R. D. van Zee, “Laser bandwidth effects in quantitative cavity ringdown spectroscopy,” Appl. Opt. 35, 4112–4116 (1996).
[CrossRef] [PubMed]

J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ringdown cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10,278–10,287 (1996).
[CrossRef]

Holleman, I.

R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity ringdown spectroscopy,” Rev. Sci. Instrum. 66, 2821–2827 (1995).
[CrossRef]

Jongma, R. T.

R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity ringdown spectroscopy,” Rev. Sci. Instrum. 66, 2821–2827 (1995).
[CrossRef]

G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, A. M. Wodtke, “Coherent cavity ringdown spectroscopy,” Chem. Phys. Lett. 217, 112–116 (1994).
[CrossRef]

Kachanov, A. A.

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “Cw cavity ringdown spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, F. Stoeckel, “Cavity ring-down spectroscopy: broadband absolute absorption measurements,” Chem. Phys. Lett. 270, 546–550 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, F. Stoeckel, “Diode laser cavity ringdown spectroscopy,” Chem. Phys. Lett. 270, 538–545 (1997).
[CrossRef]

Katsuda, T.

K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–372 (1994).
[CrossRef]

Kellis, D.

L. Zhu, D. Kellis, C. Ding, “Photolysis of glyoxal at 193, 248, 308 and 351 nm,” Chem. Phys. Lett. 257, 487–491 (1996).
[CrossRef]

Kruger, C. H.

J. Martin, B. A. Paldus, P. Zalicki, E. H. Wahl, T. G. Owano, J. S. Harris, C. H. Kruger, R. N. Zare, “Cavity ring-down spectroscopy with Fourier-transform-limited light pulses,” Chem. Phys. Lett. 258, 63–70 (1996).
[CrossRef]

E. H. Wahl, T. G. Owano, C. H. Kruger, P. Zalicki, Y. Ma, R. N. Zare, “Measurement of absolute CH3 concentration in a hot-filament reactor using cavity ringdown spectroscopy,” Diamond Related Mater. 5, 373–377 (1996).
[CrossRef]

Kwok, M. A.

Lehmann, K. K.

D. Romanini, K. K. Lehmann, “Calculation of the Herman–Wallis in Π–Σ vibrational overtone transitions in a linear molecule: comparison with HCN experimental results,” J. Chem. Phys. 105, 68–80 (1996).
[CrossRef]

K. K. Lehmann, D. Romanini, “The superposition principle and cavity ringdown spectroscopy,” J. Chem. Phys. 105, 10,263–10,277 (1996).
[CrossRef]

D. Romanini, K. K. Lehmann, “Cavity ringdown overtone spectroscopy of HCN, H13CN and HC15N,” J. Chem. Phys. 102, 633–642 (1995).
[CrossRef]

D. Romanini, K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993).
[CrossRef]

Li, Z.

Z. Li, G. E. Stedman, H. R. Bilger, “Asymmetric response profile of a scanning Fabry–Perot interferometer,” Opt. Commun. 100, 240–246 (1993).
[CrossRef]

Z. Li, R. G. T. Bennett, G. E. Stedman, “Swept-frequency induced optical cavity ringing,” Opt. Commun. 86, 51–57 (1991).
[CrossRef]

Lin, M. C.

T. Yu, M. C. Lin, “Kinetics of phenyl radical reactions studied by the cavity-ringdown method,” J. Am. Chem. Soc. 115, 4371–4372 (1993).
[CrossRef]

Looney, J. P.

J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ringdown cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10,278–10,287 (1996).
[CrossRef]

J. T. Hodges, J. P. Looney, R. D. van Zee, “Laser bandwidth effects in quantitative cavity ringdown spectroscopy,” Appl. Opt. 35, 4112–4116 (1996).
[CrossRef] [PubMed]

Ma, Y.

E. H. Wahl, T. G. Owano, C. H. Kruger, P. Zalicki, Y. Ma, R. N. Zare, “Measurement of absolute CH3 concentration in a hot-filament reactor using cavity ringdown spectroscopy,” Diamond Related Mater. 5, 373–377 (1996).
[CrossRef]

P. Zalicki, Y. Ma, R. N. Zare, E. H. Wahl, J. R. Dadamio, T. G. Owano, “Methyl radical measurement by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
[CrossRef]

Martin, J.

J. Martin, B. A. Paldus, P. Zalicki, E. H. Wahl, T. G. Owano, J. S. Harris, C. H. Kruger, R. N. Zare, “Cavity ring-down spectroscopy with Fourier-transform-limited light pulses,” Chem. Phys. Lett. 258, 63–70 (1996).
[CrossRef]

Masser, C. S.

McKay, J. A.

Meijer, G.

R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity ringdown spectroscopy,” Rev. Sci. Instrum. 66, 2821–2827 (1995).
[CrossRef]

G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, A. M. Wodtke, “Coherent cavity ringdown spectroscopy,” Chem. Phys. Lett. 217, 112–116 (1994).
[CrossRef]

Muris, S.

T. Etzkorn, J. Fitzer, S. Muris, J. Wolfrum, “Determination of absolute methyl- and hydroxyl-radical concentrations in a low pressure methane–oxygen flame,” Chem. Phys. Lett. 208, 307–310 (1993).
[CrossRef]

Nakagawa, K.

K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–372 (1994).
[CrossRef]

O’Keefe, A.

A. O’Keefe, J. J. Scherer, A. L. Cooksy, R. Sheeks, J. Heath, R. J. Saykally, “Cavity ringdown dye laser spectroscopy of jet-cooled metal clusters: Cu2 and Cu3,” Chem. Phys. Lett. 172, 214–218 (1990).
[CrossRef]

A. O’Keefe, D. A. G. Deacon, “Cavity ringdown optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Ohtsu, M.

K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–372 (1994).
[CrossRef]

Ortega, J. M.

Owano, T. G.

J. Martin, B. A. Paldus, P. Zalicki, E. H. Wahl, T. G. Owano, J. S. Harris, C. H. Kruger, R. N. Zare, “Cavity ring-down spectroscopy with Fourier-transform-limited light pulses,” Chem. Phys. Lett. 258, 63–70 (1996).
[CrossRef]

E. H. Wahl, T. G. Owano, C. H. Kruger, P. Zalicki, Y. Ma, R. N. Zare, “Measurement of absolute CH3 concentration in a hot-filament reactor using cavity ringdown spectroscopy,” Diamond Related Mater. 5, 373–377 (1996).
[CrossRef]

P. Zalicki, Y. Ma, R. N. Zare, E. H. Wahl, J. R. Dadamio, T. G. Owano, “Methyl radical measurement by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
[CrossRef]

Paldus, B. A.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ringdown spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

J. Martin, B. A. Paldus, P. Zalicki, E. H. Wahl, T. G. Owano, J. S. Harris, C. H. Kruger, R. N. Zare, “Cavity ring-down spectroscopy with Fourier-transform-limited light pulses,” Chem. Phys. Lett. 258, 63–70 (1996).
[CrossRef]

Parker, D. H.

G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, A. M. Wodtke, “Coherent cavity ringdown spectroscopy,” Chem. Phys. Lett. 217, 112–116 (1994).
[CrossRef]

Poirson, J.

Rakestraw, D. J.

J. J. Scherer, D. J. Rakestraw, “Cavity ringdown laser absorption spectroscopy detection of formyl (HCO) radical in a low pressure flame,” Chem. Phys. Lett. 265, 169–176 (1997).
[CrossRef]

Romanini, D.

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “Cw cavity ringdown spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, F. Stoeckel, “Diode laser cavity ringdown spectroscopy,” Chem. Phys. Lett. 270, 538–545 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, F. Stoeckel, “Cavity ring-down spectroscopy: broadband absolute absorption measurements,” Chem. Phys. Lett. 270, 546–550 (1997).
[CrossRef]

K. K. Lehmann, D. Romanini, “The superposition principle and cavity ringdown spectroscopy,” J. Chem. Phys. 105, 10,263–10,277 (1996).
[CrossRef]

D. Romanini, K. K. Lehmann, “Calculation of the Herman–Wallis in Π–Σ vibrational overtone transitions in a linear molecule: comparison with HCN experimental results,” J. Chem. Phys. 105, 68–80 (1996).
[CrossRef]

D. Romanini, K. K. Lehmann, “Cavity ringdown overtone spectroscopy of HCN, H13CN and HC15N,” J. Chem. Phys. 102, 633–642 (1995).
[CrossRef]

D. Romanini, K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993).
[CrossRef]

Sadeghi, N.

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “Cw cavity ringdown spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
[CrossRef]

Saykally, R. J.

A. O’Keefe, J. J. Scherer, A. L. Cooksy, R. Sheeks, J. Heath, R. J. Saykally, “Cavity ringdown dye laser spectroscopy of jet-cooled metal clusters: Cu2 and Cu3,” Chem. Phys. Lett. 172, 214–218 (1990).
[CrossRef]

Scherer, J. J.

J. J. Scherer, D. J. Rakestraw, “Cavity ringdown laser absorption spectroscopy detection of formyl (HCO) radical in a low pressure flame,” Chem. Phys. Lett. 265, 169–176 (1997).
[CrossRef]

A. O’Keefe, J. J. Scherer, A. L. Cooksy, R. Sheeks, J. Heath, R. J. Saykally, “Cavity ringdown dye laser spectroscopy of jet-cooled metal clusters: Cu2 and Cu3,” Chem. Phys. Lett. 172, 214–218 (1990).
[CrossRef]

Sheeks, R.

A. O’Keefe, J. J. Scherer, A. L. Cooksy, R. Sheeks, J. Heath, R. J. Saykally, “Cavity ringdown dye laser spectroscopy of jet-cooled metal clusters: Cu2 and Cu3,” Chem. Phys. Lett. 172, 214–218 (1990).
[CrossRef]

Shelkovnikov, A. S.

K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–372 (1994).
[CrossRef]

Spence, T. G.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ringdown spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

Spencer, D. J.

Stedman, G. E.

Z. Li, G. E. Stedman, H. R. Bilger, “Asymmetric response profile of a scanning Fabry–Perot interferometer,” Opt. Commun. 100, 240–246 (1993).
[CrossRef]

Z. Li, R. G. T. Bennett, G. E. Stedman, “Swept-frequency induced optical cavity ringing,” Opt. Commun. 86, 51–57 (1991).
[CrossRef]

Stoeckel, F.

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “Cw cavity ringdown spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, F. Stoeckel, “Cavity ring-down spectroscopy: broadband absolute absorption measurements,” Chem. Phys. Lett. 270, 546–550 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, F. Stoeckel, “Diode laser cavity ringdown spectroscopy,” Chem. Phys. Lett. 270, 538–545 (1997).
[CrossRef]

Teich, M. C.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
[CrossRef]

Ueunten, R. H.

Urevig, D. S.

Vallet, M.

van Zee, R. D.

J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ringdown cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10,278–10,287 (1996).
[CrossRef]

J. T. Hodges, J. P. Looney, R. D. van Zee, “Laser bandwidth effects in quantitative cavity ringdown spectroscopy,” Appl. Opt. 35, 4112–4116 (1996).
[CrossRef] [PubMed]

Velghe, M.

Wahl, E. H.

J. Martin, B. A. Paldus, P. Zalicki, E. H. Wahl, T. G. Owano, J. S. Harris, C. H. Kruger, R. N. Zare, “Cavity ring-down spectroscopy with Fourier-transform-limited light pulses,” Chem. Phys. Lett. 258, 63–70 (1996).
[CrossRef]

E. H. Wahl, T. G. Owano, C. H. Kruger, P. Zalicki, Y. Ma, R. N. Zare, “Measurement of absolute CH3 concentration in a hot-filament reactor using cavity ringdown spectroscopy,” Diamond Related Mater. 5, 373–377 (1996).
[CrossRef]

P. Zalicki, Y. Ma, R. N. Zare, E. H. Wahl, J. R. Dadamio, T. G. Owano, “Methyl radical measurement by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
[CrossRef]

Wilke, B.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ringdown spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

Wodtke, A. M.

G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, A. M. Wodtke, “Coherent cavity ringdown spectroscopy,” Chem. Phys. Lett. 217, 112–116 (1994).
[CrossRef]

Wolfrum, J.

T. Etzkorn, J. Fitzer, S. Muris, J. Wolfrum, “Determination of absolute methyl- and hydroxyl-radical concentrations in a low pressure methane–oxygen flame,” Chem. Phys. Lett. 208, 307–310 (1993).
[CrossRef]

Xie, J.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ringdown spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

Yang, C.

Yu, T.

T. Yu, M. C. Lin, “Kinetics of phenyl radical reactions studied by the cavity-ringdown method,” J. Am. Chem. Soc. 115, 4371–4372 (1993).
[CrossRef]

Zalicki, P.

E. H. Wahl, T. G. Owano, C. H. Kruger, P. Zalicki, Y. Ma, R. N. Zare, “Measurement of absolute CH3 concentration in a hot-filament reactor using cavity ringdown spectroscopy,” Diamond Related Mater. 5, 373–377 (1996).
[CrossRef]

J. Martin, B. A. Paldus, P. Zalicki, E. H. Wahl, T. G. Owano, J. S. Harris, C. H. Kruger, R. N. Zare, “Cavity ring-down spectroscopy with Fourier-transform-limited light pulses,” Chem. Phys. Lett. 258, 63–70 (1996).
[CrossRef]

P. Zalicki, Y. Ma, R. N. Zare, E. H. Wahl, J. R. Dadamio, T. G. Owano, “Methyl radical measurement by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
[CrossRef]

P. Zalicki, R. N. Zare, “Cavity ringdown spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

Zare, R. N.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ringdown spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

J. Martin, B. A. Paldus, P. Zalicki, E. H. Wahl, T. G. Owano, J. S. Harris, C. H. Kruger, R. N. Zare, “Cavity ring-down spectroscopy with Fourier-transform-limited light pulses,” Chem. Phys. Lett. 258, 63–70 (1996).
[CrossRef]

E. H. Wahl, T. G. Owano, C. H. Kruger, P. Zalicki, Y. Ma, R. N. Zare, “Measurement of absolute CH3 concentration in a hot-filament reactor using cavity ringdown spectroscopy,” Diamond Related Mater. 5, 373–377 (1996).
[CrossRef]

P. Zalicki, Y. Ma, R. N. Zare, E. H. Wahl, J. R. Dadamio, T. G. Owano, “Methyl radical measurement by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
[CrossRef]

P. Zalicki, R. N. Zare, “Cavity ringdown spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

Zhu, L.

L. Zhu, D. Kellis, C. Ding, “Photolysis of glyoxal at 193, 248, 308 and 351 nm,” Chem. Phys. Lett. 257, 487–491 (1996).
[CrossRef]

Appl. Opt. (4)

Chem. Phys. Lett. (10)

L. Zhu, D. Kellis, C. Ding, “Photolysis of glyoxal at 193, 248, 308 and 351 nm,” Chem. Phys. Lett. 257, 487–491 (1996).
[CrossRef]

G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, A. M. Wodtke, “Coherent cavity ringdown spectroscopy,” Chem. Phys. Lett. 217, 112–116 (1994).
[CrossRef]

J. J. Scherer, D. J. Rakestraw, “Cavity ringdown laser absorption spectroscopy detection of formyl (HCO) radical in a low pressure flame,” Chem. Phys. Lett. 265, 169–176 (1997).
[CrossRef]

T. Etzkorn, J. Fitzer, S. Muris, J. Wolfrum, “Determination of absolute methyl- and hydroxyl-radical concentrations in a low pressure methane–oxygen flame,” Chem. Phys. Lett. 208, 307–310 (1993).
[CrossRef]

A. O’Keefe, J. J. Scherer, A. L. Cooksy, R. Sheeks, J. Heath, R. J. Saykally, “Cavity ringdown dye laser spectroscopy of jet-cooled metal clusters: Cu2 and Cu3,” Chem. Phys. Lett. 172, 214–218 (1990).
[CrossRef]

P. Zalicki, Y. Ma, R. N. Zare, E. H. Wahl, J. R. Dadamio, T. G. Owano, “Methyl radical measurement by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
[CrossRef]

J. Martin, B. A. Paldus, P. Zalicki, E. H. Wahl, T. G. Owano, J. S. Harris, C. H. Kruger, R. N. Zare, “Cavity ring-down spectroscopy with Fourier-transform-limited light pulses,” Chem. Phys. Lett. 258, 63–70 (1996).
[CrossRef]

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “Cw cavity ringdown spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, F. Stoeckel, “Diode laser cavity ringdown spectroscopy,” Chem. Phys. Lett. 270, 538–545 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, F. Stoeckel, “Cavity ring-down spectroscopy: broadband absolute absorption measurements,” Chem. Phys. Lett. 270, 546–550 (1997).
[CrossRef]

Diamond Related Mater. (1)

E. H. Wahl, T. G. Owano, C. H. Kruger, P. Zalicki, Y. Ma, R. N. Zare, “Measurement of absolute CH3 concentration in a hot-filament reactor using cavity ringdown spectroscopy,” Diamond Related Mater. 5, 373–377 (1996).
[CrossRef]

J. Am. Chem. Soc. (1)

T. Yu, M. C. Lin, “Kinetics of phenyl radical reactions studied by the cavity-ringdown method,” J. Am. Chem. Soc. 115, 4371–4372 (1993).
[CrossRef]

J. Appl. Phys. (1)

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ringdown spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

J. Chem. Phys. (6)

D. Romanini, K. K. Lehmann, “Cavity ringdown overtone spectroscopy of HCN, H13CN and HC15N,” J. Chem. Phys. 102, 633–642 (1995).
[CrossRef]

D. Romanini, K. K. Lehmann, “Calculation of the Herman–Wallis in Π–Σ vibrational overtone transitions in a linear molecule: comparison with HCN experimental results,” J. Chem. Phys. 105, 68–80 (1996).
[CrossRef]

P. Zalicki, R. N. Zare, “Cavity ringdown spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

K. K. Lehmann, D. Romanini, “The superposition principle and cavity ringdown spectroscopy,” J. Chem. Phys. 105, 10,263–10,277 (1996).
[CrossRef]

J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ringdown cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10,278–10,287 (1996).
[CrossRef]

D. Romanini, K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (3)

K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–372 (1994).
[CrossRef]

Z. Li, R. G. T. Bennett, G. E. Stedman, “Swept-frequency induced optical cavity ringing,” Opt. Commun. 86, 51–57 (1991).
[CrossRef]

Z. Li, G. E. Stedman, H. R. Bilger, “Asymmetric response profile of a scanning Fabry–Perot interferometer,” Opt. Commun. 100, 240–246 (1993).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (2)

R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity ringdown spectroscopy,” Rev. Sci. Instrum. 66, 2821–2827 (1995).
[CrossRef]

A. O’Keefe, D. A. G. Deacon, “Cavity ringdown optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Other (1)

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic diagram of the apparatus for a cw CRDS system. (b) Electronic circuit for driving the PZT.

Fig. 2
Fig. 2

Calculated intensity of a cw laser transmitted through a scanning Fabry–Perot cavity. The spectral linewidth of the cw laser is (a) monochromatic and (b) 100 kHz. The mirror was scanned with at a speed of 100 FSR/s (larger curve, upper trace) and 1000 FSR/s (smaller curve, lower trace). For the calculation, λ0 = 570 nm and L 0 = 30 cm.

Fig. 3
Fig. 3

Coupling efficiency calculated as a function of laser linewidth for various scanning rates.

Fig. 4
Fig. 4

Coupling efficiency calculated as a function of mirror reflectivity.

Fig. 5
Fig. 5

Calculated cavity ringdown signals obtained with a fast-scanning PZT. For the calculation, λ0 = 570 nm, R = 0.9999, L 0 = 30 cm, and Δν = 10 kHz.

Fig. 6
Fig. 6

Single trace of the experimental cavity ringdown signal obtained by scanning the cavity with a PZT.

Fig. 7
Fig. 7

CRDS spectrum of a weak overtone of acetylene measured with a scanning laser frequency of 30 GHz.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Eoutt=T2E0 expikz-ωtr×n=0 2n expikνtrn2l-n
I0Mt=T2I0n=0 Rn expikνtrn2l-n2,
Ioutt=1π0 T2R2l+δω×n=-l+δω Rn exp-iωtrνcn22×I0Δωdωω-ω02+Δω/22,
Lt=L0+νt,  t<tsw,  Lt=L0+νt-ΔL1-exp-Γswt-tsw,  ttsw,

Metrics