Abstract

Wavelength-modulation spectroscopy with a standard commercial 1.55-µm distributed-feedback diode laser was applied to in situ quantitative measurements of OH radical concentration in combustion environments. The second-harmonic (2f) signal was generated from absorption by the P11.5 (ν′, ν") = (2, 0) overtone vibrational transition of OH at 6421.354 cm-1. The absorption occurred in the postflame region of a two-dimensional laminar counterflow burner (Tsuji burner) with a 60-mm line-of-sight path length. The postflame region lies between propane–air premixed twin flames stabilized in the Tsuji burner at various equivalence ratios (ϕ = 0.65–1.0). The OH concentrations were determined by least-squares fitting of theoretical 2f line shapes to the experimental counterparts. The measured OH concentrations were in general agreement with adiabatic chemical equilibrium predictions. The lower limit of OH detectivity by multiline deconvolution was limited by ubiquitous unidentified high-temperature H2O transitions.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. V. Nguyen, R. W. Dibble, T. Day, “High-resolution oxygen absorption spectrum obtained with an external-cavity continuously tunable diode laser,” Opt. Lett. 19, 2134–2136 (1994).
    [CrossRef] [PubMed]
  2. R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
    [CrossRef]
  3. D. M. Sonnenfroh, M. G. Allen, “Observation of CO and CO2 absorption near 1.57 µm with an external-cavity diode laser,” Appl. Opt. 36, 3298–3300 (1997).
    [CrossRef] [PubMed]
  4. D. B. Oh, M. E. Paige, D. S. Bomse, “Frequency modulation multiplexing for simultaneous detection of multiple gases by use of wavelength modulation spectroscopy with diode lasers,” Appl. Opt. 37, 2499–2501 (1998).
    [CrossRef]
  5. R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Tunable diode-laser absorption measurement of NO2 near 670 and 395 nm,” Appl. Opt. 35, 4059–4064 (1996).
    [CrossRef] [PubMed]
  6. D. M. Sonnenfroh, M. G. Allen, “Ultrasensitive, visible tunable diode laser detection of NO2,” Appl. Opt. 35, 4053–4058 (1996).
    [CrossRef] [PubMed]
  7. V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
    [CrossRef] [PubMed]
  8. D. B. Oh, D. C. Hovde, “Wavelength-modulation detection of acetylene with a near-infrared external cavity diode laser,” Appl. Opt. 34, 7002–7005 (1995).
    [CrossRef] [PubMed]
  9. S. I. Chou, V. Nagali, D. S. Baer, R. K. Hanson, “Hydrocarbon measurements using diode-laser absorption near 1.65 µm,” AIAA Pap. 96-0746 (1996).
  10. M. F. Miller, W. J. Kessler, M. G. Allen, “Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets,” Appl. Opt. 35, 4905–4912 (1996).
    [CrossRef] [PubMed]
  11. J. A. Silver, D. J. Kane, P. S. Greengerg, “Quantitative species measurements in microgravity flames with near-IR diode lasers,” Appl. Opt. 34, 2787–2801 (1995).
    [CrossRef] [PubMed]
  12. M. G. Allen, W. J. Kessler, “Simultaneous water vapor concentration and temperature measurements using 1.31 µm diode lasers,” AIAA J. 34, 483–488 (1996).
    [CrossRef]
  13. D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using multiplexed diode lasers,” AIAA J. 34, 489–493 (1996).
    [CrossRef]
  14. R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Advanced diode laser absorption sensor for in-situ combustion measurements of CO2, H2O, and gas temperature,” AIAA Pap. 98-0237 (1998).
  15. D. M. Sonnenfroh, M. G. Allen, “Diode laser sensors for combustor and aeroengine emission testing: applications to CO, CO2, OH, and NO,” AIAA Pap. 96-2226 (1996).
  16. D. M. Sonnenfroh, M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with an 1.8-µm room-temperature diode laser,” Appl. Opt. 36, 7970–7977 (1997).
    [CrossRef]
  17. D. B. Oh, M. E. Paige, A. C. Stanton, J. A. Silver, “Quantitative, in situ monitoring of combustion radicals using visible and near-infrared diode lasers and high frequency wavelength-modulation spectroscopy,” presented at the Fall Meeting of the Western States Section of the Combustion Institute, paper 96F-084 (University of Southern California, Los Angeles, Calif., 1996).
  18. D. S. Baer, R. K. Hanson, M. E. Newfield, N. K. L. M. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994).
    [CrossRef]
  19. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
    [CrossRef]
  20. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
    [CrossRef] [PubMed]
  21. D. S. Bomse, A. C. Stanton, J. A. Silver, “Frequency modulation and wavelength modulation spectroscopy: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
    [CrossRef] [PubMed]
  22. L. C. Philippe, R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993).
    [CrossRef] [PubMed]
  23. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
    [CrossRef]
  24. A. C. G. Mitchell, M. W. Zemansky, Resonance and Radiation and Excited Atoms (Cambridge U. Press, Cambridge, 1971).
  25. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
    [CrossRef]
  26. H. Tsuji, “Counterflow diffusion flames,” Prog. Energy Combust. Sci. 8, 93–119 (1982).
    [CrossRef]
  27. L. S. Rothman, R. B. Watson, R. R. Gamache, D. Goorvetch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, A. Goldman, J. Schroeder, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer (to be published).
  28. E. C. Rea, A. Y. Chang, R. K. Hanson, “Shock-tube study of pressure broadening of the A2 Σ+-X2Π (0, 0) band of OH by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 37, 117–127 (1987).
    [CrossRef]
  29. E. C. Rea, A. Y. Chang, R. K. Hanson, “Collisional broadening of the A2 Σ+-X2Π band of OH by H2O and CO2 in atmospheric-pressure flames,” J. Quant. Spectrosc. Radiat. Transfer 41, 29–42 (1989).
    [CrossRef]
  30. W. C. Reynolds, WRC@thermo.stanford.edu, computer program stanjan.

1998 (3)

D. B. Oh, M. E. Paige, D. S. Bomse, “Frequency modulation multiplexing for simultaneous detection of multiple gases by use of wavelength modulation spectroscopy with diode lasers,” Appl. Opt. 37, 2499–2501 (1998).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

1997 (2)

1996 (6)

1995 (2)

1994 (2)

1993 (1)

1992 (2)

1989 (1)

E. C. Rea, A. Y. Chang, R. K. Hanson, “Collisional broadening of the A2 Σ+-X2Π band of OH by H2O and CO2 in atmospheric-pressure flames,” J. Quant. Spectrosc. Radiat. Transfer 41, 29–42 (1989).
[CrossRef]

1987 (1)

E. C. Rea, A. Y. Chang, R. K. Hanson, “Shock-tube study of pressure broadening of the A2 Σ+-X2Π (0, 0) band of OH by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 37, 117–127 (1987).
[CrossRef]

1982 (1)

H. Tsuji, “Counterflow diffusion flames,” Prog. Energy Combust. Sci. 8, 93–119 (1982).
[CrossRef]

1981 (1)

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Allen, M. G.

Baer, D. S.

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
[CrossRef] [PubMed]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Tunable diode-laser absorption measurement of NO2 near 670 and 395 nm,” Appl. Opt. 35, 4059–4064 (1996).
[CrossRef] [PubMed]

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using multiplexed diode lasers,” AIAA J. 34, 489–493 (1996).
[CrossRef]

D. S. Baer, R. K. Hanson, M. E. Newfield, N. K. L. M. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Advanced diode laser absorption sensor for in-situ combustion measurements of CO2, H2O, and gas temperature,” AIAA Pap. 98-0237 (1998).

S. I. Chou, V. Nagali, D. S. Baer, R. K. Hanson, “Hydrocarbon measurements using diode-laser absorption near 1.65 µm,” AIAA Pap. 96-0746 (1996).

Bomse, D. S.

Brown, L. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Camy-Peyret, C.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

L. S. Rothman, R. B. Watson, R. R. Gamache, D. Goorvetch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, A. Goldman, J. Schroeder, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

Chance, K. V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Chang, A. Y.

E. C. Rea, A. Y. Chang, R. K. Hanson, “Collisional broadening of the A2 Σ+-X2Π band of OH by H2O and CO2 in atmospheric-pressure flames,” J. Quant. Spectrosc. Radiat. Transfer 41, 29–42 (1989).
[CrossRef]

E. C. Rea, A. Y. Chang, R. K. Hanson, “Shock-tube study of pressure broadening of the A2 Σ+-X2Π (0, 0) band of OH by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 37, 117–127 (1987).
[CrossRef]

Chou, S. I.

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
[CrossRef] [PubMed]

S. I. Chou, V. Nagali, D. S. Baer, R. K. Hanson, “Hydrocarbon measurements using diode-laser absorption near 1.65 µm,” AIAA Pap. 96-0746 (1996).

Dana, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Day, T.

Dibble, R. W.

Edwards, D. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Flaud, J.-M.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

L. S. Rothman, R. B. Watson, R. R. Gamache, D. Goorvetch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, A. Goldman, J. Schroeder, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

Furlong, E. R.

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using multiplexed diode lasers,” AIAA J. 34, 489–493 (1996).
[CrossRef]

Gamache, R. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

L. S. Rothman, R. B. Watson, R. R. Gamache, D. Goorvetch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, A. Goldman, J. Schroeder, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

Goldman, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

L. S. Rothman, R. B. Watson, R. R. Gamache, D. Goorvetch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, A. Goldman, J. Schroeder, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

Goorvetch, D.

L. S. Rothman, R. B. Watson, R. R. Gamache, D. Goorvetch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, A. Goldman, J. Schroeder, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

Gopaul, N. K. L. M.

Greengerg, P. S.

Hanson, R. K.

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Tunable diode-laser absorption measurement of NO2 near 670 and 395 nm,” Appl. Opt. 35, 4059–4064 (1996).
[CrossRef] [PubMed]

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
[CrossRef] [PubMed]

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using multiplexed diode lasers,” AIAA J. 34, 489–493 (1996).
[CrossRef]

D. S. Baer, R. K. Hanson, M. E. Newfield, N. K. L. M. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994).
[CrossRef]

L. C. Philippe, R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993).
[CrossRef] [PubMed]

E. C. Rea, A. Y. Chang, R. K. Hanson, “Collisional broadening of the A2 Σ+-X2Π band of OH by H2O and CO2 in atmospheric-pressure flames,” J. Quant. Spectrosc. Radiat. Transfer 41, 29–42 (1989).
[CrossRef]

E. C. Rea, A. Y. Chang, R. K. Hanson, “Shock-tube study of pressure broadening of the A2 Σ+-X2Π (0, 0) band of OH by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 37, 117–127 (1987).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Advanced diode laser absorption sensor for in-situ combustion measurements of CO2, H2O, and gas temperature,” AIAA Pap. 98-0237 (1998).

S. I. Chou, V. Nagali, D. S. Baer, R. K. Hanson, “Hydrocarbon measurements using diode-laser absorption near 1.65 µm,” AIAA Pap. 96-0746 (1996).

Hawkins, R. L.

L. S. Rothman, R. B. Watson, R. R. Gamache, D. Goorvetch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, A. Goldman, J. Schroeder, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

Hovde, D. C.

Jucks, K. W.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Kane, D. J.

Kessler, W. J.

M. F. Miller, W. J. Kessler, M. G. Allen, “Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets,” Appl. Opt. 35, 4905–4912 (1996).
[CrossRef] [PubMed]

M. G. Allen, W. J. Kessler, “Simultaneous water vapor concentration and temperature measurements using 1.31 µm diode lasers,” AIAA J. 34, 483–488 (1996).
[CrossRef]

Labrie, D.

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Mandin, J.-Y.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Massie, S. T.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

McCann, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Mihalcea, R. M.

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Tunable diode-laser absorption measurement of NO2 near 670 and 395 nm,” Appl. Opt. 35, 4059–4064 (1996).
[CrossRef] [PubMed]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Advanced diode laser absorption sensor for in-situ combustion measurements of CO2, H2O, and gas temperature,” AIAA Pap. 98-0237 (1998).

Miller, M. F.

Mitchell, A. C. G.

A. C. G. Mitchell, M. W. Zemansky, Resonance and Radiation and Excited Atoms (Cambridge U. Press, Cambridge, 1971).

Nagali, V.

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using multiplexed diode lasers,” AIAA J. 34, 489–493 (1996).
[CrossRef]

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
[CrossRef] [PubMed]

S. I. Chou, V. Nagali, D. S. Baer, R. K. Hanson, “Hydrocarbon measurements using diode-laser absorption near 1.65 µm,” AIAA Pap. 96-0746 (1996).

Nemtchinov, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Newfield, M. E.

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using multiplexed diode lasers,” AIAA J. 34, 489–493 (1996).
[CrossRef]

D. S. Baer, R. K. Hanson, M. E. Newfield, N. K. L. M. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994).
[CrossRef]

Nguyen, Q. V.

Oh, D. B.

D. B. Oh, M. E. Paige, D. S. Bomse, “Frequency modulation multiplexing for simultaneous detection of multiple gases by use of wavelength modulation spectroscopy with diode lasers,” Appl. Opt. 37, 2499–2501 (1998).
[CrossRef]

D. B. Oh, D. C. Hovde, “Wavelength-modulation detection of acetylene with a near-infrared external cavity diode laser,” Appl. Opt. 34, 7002–7005 (1995).
[CrossRef] [PubMed]

D. B. Oh, M. E. Paige, A. C. Stanton, J. A. Silver, “Quantitative, in situ monitoring of combustion radicals using visible and near-infrared diode lasers and high frequency wavelength-modulation spectroscopy,” presented at the Fall Meeting of the Western States Section of the Combustion Institute, paper 96F-084 (University of Southern California, Los Angeles, Calif., 1996).

Paige, M. E.

D. B. Oh, M. E. Paige, D. S. Bomse, “Frequency modulation multiplexing for simultaneous detection of multiple gases by use of wavelength modulation spectroscopy with diode lasers,” Appl. Opt. 37, 2499–2501 (1998).
[CrossRef]

D. B. Oh, M. E. Paige, A. C. Stanton, J. A. Silver, “Quantitative, in situ monitoring of combustion radicals using visible and near-infrared diode lasers and high frequency wavelength-modulation spectroscopy,” presented at the Fall Meeting of the Western States Section of the Combustion Institute, paper 96F-084 (University of Southern California, Los Angeles, Calif., 1996).

Perrin, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Philippe, L. C.

Rea, E. C.

E. C. Rea, A. Y. Chang, R. K. Hanson, “Collisional broadening of the A2 Σ+-X2Π band of OH by H2O and CO2 in atmospheric-pressure flames,” J. Quant. Spectrosc. Radiat. Transfer 41, 29–42 (1989).
[CrossRef]

E. C. Rea, A. Y. Chang, R. K. Hanson, “Shock-tube study of pressure broadening of the A2 Σ+-X2Π (0, 0) band of OH by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 37, 117–127 (1987).
[CrossRef]

Reid, J.

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Rinsland, C. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Rothman, L. S.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

L. S. Rothman, R. B. Watson, R. R. Gamache, D. Goorvetch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, A. Goldman, J. Schroeder, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

Saleh, B. E. A.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
[CrossRef]

Schroeder, J.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

L. S. Rothman, R. B. Watson, R. R. Gamache, D. Goorvetch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, A. Goldman, J. Schroeder, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

Selby, J. E. A.

L. S. Rothman, R. B. Watson, R. R. Gamache, D. Goorvetch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, A. Goldman, J. Schroeder, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

Silver, J. A.

Sonnenfroh, D. M.

Stanton, A. C.

D. S. Bomse, A. C. Stanton, J. A. Silver, “Frequency modulation and wavelength modulation spectroscopy: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
[CrossRef] [PubMed]

D. B. Oh, M. E. Paige, A. C. Stanton, J. A. Silver, “Quantitative, in situ monitoring of combustion radicals using visible and near-infrared diode lasers and high frequency wavelength-modulation spectroscopy,” presented at the Fall Meeting of the Western States Section of the Combustion Institute, paper 96F-084 (University of Southern California, Los Angeles, Calif., 1996).

Teich, M. C.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
[CrossRef]

Tsuji, H.

H. Tsuji, “Counterflow diffusion flames,” Prog. Energy Combust. Sci. 8, 93–119 (1982).
[CrossRef]

Varanasi, P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Watson, R. B.

L. S. Rothman, R. B. Watson, R. R. Gamache, D. Goorvetch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, A. Goldman, J. Schroeder, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

Wattson, R. B.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Yoshino, K.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Zemansky, M. W.

A. C. G. Mitchell, M. W. Zemansky, Resonance and Radiation and Excited Atoms (Cambridge U. Press, Cambridge, 1971).

AIAA J. (2)

M. G. Allen, W. J. Kessler, “Simultaneous water vapor concentration and temperature measurements using 1.31 µm diode lasers,” AIAA J. 34, 483–488 (1996).
[CrossRef]

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using multiplexed diode lasers,” AIAA J. 34, 489–493 (1996).
[CrossRef]

Appl. Opt. (12)

D. M. Sonnenfroh, M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with an 1.8-µm room-temperature diode laser,” Appl. Opt. 36, 7970–7977 (1997).
[CrossRef]

D. M. Sonnenfroh, M. G. Allen, “Observation of CO and CO2 absorption near 1.57 µm with an external-cavity diode laser,” Appl. Opt. 36, 3298–3300 (1997).
[CrossRef] [PubMed]

D. B. Oh, M. E. Paige, D. S. Bomse, “Frequency modulation multiplexing for simultaneous detection of multiple gases by use of wavelength modulation spectroscopy with diode lasers,” Appl. Opt. 37, 2499–2501 (1998).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Tunable diode-laser absorption measurement of NO2 near 670 and 395 nm,” Appl. Opt. 35, 4059–4064 (1996).
[CrossRef] [PubMed]

D. M. Sonnenfroh, M. G. Allen, “Ultrasensitive, visible tunable diode laser detection of NO2,” Appl. Opt. 35, 4053–4058 (1996).
[CrossRef] [PubMed]

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
[CrossRef] [PubMed]

D. B. Oh, D. C. Hovde, “Wavelength-modulation detection of acetylene with a near-infrared external cavity diode laser,” Appl. Opt. 34, 7002–7005 (1995).
[CrossRef] [PubMed]

M. F. Miller, W. J. Kessler, M. G. Allen, “Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets,” Appl. Opt. 35, 4905–4912 (1996).
[CrossRef] [PubMed]

J. A. Silver, D. J. Kane, P. S. Greengerg, “Quantitative species measurements in microgravity flames with near-IR diode lasers,” Appl. Opt. 34, 2787–2801 (1995).
[CrossRef] [PubMed]

J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
[CrossRef] [PubMed]

D. S. Bomse, A. C. Stanton, J. A. Silver, “Frequency modulation and wavelength modulation spectroscopy: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
[CrossRef] [PubMed]

L. C. Philippe, R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993).
[CrossRef] [PubMed]

Appl. Phys. B (1)

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (3)

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

E. C. Rea, A. Y. Chang, R. K. Hanson, “Shock-tube study of pressure broadening of the A2 Σ+-X2Π (0, 0) band of OH by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 37, 117–127 (1987).
[CrossRef]

E. C. Rea, A. Y. Chang, R. K. Hanson, “Collisional broadening of the A2 Σ+-X2Π band of OH by H2O and CO2 in atmospheric-pressure flames,” J. Quant. Spectrosc. Radiat. Transfer 41, 29–42 (1989).
[CrossRef]

Meas. Sci. Technol. (1)

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

Opt. Lett. (2)

Prog. Energy Combust. Sci. (1)

H. Tsuji, “Counterflow diffusion flames,” Prog. Energy Combust. Sci. 8, 93–119 (1982).
[CrossRef]

Other (8)

L. S. Rothman, R. B. Watson, R. R. Gamache, D. Goorvetch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, A. Goldman, J. Schroeder, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

W. C. Reynolds, WRC@thermo.stanford.edu, computer program stanjan.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
[CrossRef]

A. C. G. Mitchell, M. W. Zemansky, Resonance and Radiation and Excited Atoms (Cambridge U. Press, Cambridge, 1971).

D. B. Oh, M. E. Paige, A. C. Stanton, J. A. Silver, “Quantitative, in situ monitoring of combustion radicals using visible and near-infrared diode lasers and high frequency wavelength-modulation spectroscopy,” presented at the Fall Meeting of the Western States Section of the Combustion Institute, paper 96F-084 (University of Southern California, Los Angeles, Calif., 1996).

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Advanced diode laser absorption sensor for in-situ combustion measurements of CO2, H2O, and gas temperature,” AIAA Pap. 98-0237 (1998).

D. M. Sonnenfroh, M. G. Allen, “Diode laser sensors for combustor and aeroengine emission testing: applications to CO, CO2, OH, and NO,” AIAA Pap. 96-2226 (1996).

S. I. Chou, V. Nagali, D. S. Baer, R. K. Hanson, “Hydrocarbon measurements using diode-laser absorption near 1.65 µm,” AIAA Pap. 96-0746 (1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Optical setup for diode-laser absorption measurements: BS’s, beamsplitters; PD’s, photodiodes.

Fig. 2
Fig. 2

Counterflow burner and position of the measurement beam.

Fig. 3
Fig. 3

Predicted line intensity of near-infrared transitions of OH and H2O at 2000 K.

Fig. 4
Fig. 4

Measured 2f signal of absorption in the postflame region between the propane–air premixed counterflow twin flames at several equivalence ratios.

Fig. 5
Fig. 5

Measured 2f signal of absorption by high-temperature H2O in a heated low-pressure cell at three cell temperatures.

Fig. 6
Fig. 6

Measured direct absorption profile of the P11.5 (ν′, ν") = (2, 0) OH line pair in the postflame region between the ϕ = 0.9 propane–air premixed counterflow twin flames.

Fig. 7
Fig. 7

Variation of (a) measured 2f signal of etalon transmission (free spectral range, 0.0508 cm-1) with the lock-in amplifier detection phase ϕ from -60° to -160°, (b) AM–FM phase shift ψ, and (c) modulation depth Δν, versus scanning injection current of the diode laser.

Fig. 8
Fig. 8

Variation of measured 2f signal of absorption by the P11.5 (ν′, ν") = (2, 0) OH line at 6421.354 cm-1 with the equivalence ratio of the propane–air premixed flames.

Fig. 9
Fig. 9

Measured 2f signal of absorption in the postflame region between the stoichiometric propane–air premixed twin flames and a four-line Voigt-fitted 2f signal profile (dashed curves).

Fig. 10
Fig. 10

Comparison between the measured 2f spectrum and the predicted direct absorption spectrum of high-temperature H2O (30 Torr, 1400 K).

Fig. 11
Fig. 11

Voigt parameter obtained from 2f signal least-squares fitting (open symbols) and the assumed variation (solid curve) versus equivalence ratio of the propane–air premixed counterflow flames.

Fig. 12
Fig. 12

Comparison between the predicted OH concentration based on an adiabatic chemical equilibrium calculation (solid curve) and the optically measured OH concentration (open symbols).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

τν=IνI0ν=exp-ανL,
αν=STgν-ν0N,
a=ln2ΔνCΔνD,
νt=ν¯+Δνcosωmt,
I0t=I0¯+i0 cosωmt+ψ,
τνt=k=0k=+ Hkv¯,Δv cos kωmt,
Hkν¯,Δν=1π-π+π τν¯+Δν cos u cos kudu  k>0,
Y2ν¯=i04 H3ν¯,Δνcos2ψ+ϕ-I0¯2 H2ν¯,Δνcosψ+ϕ+i04 H1ν¯,Δνcos ϕ,
Y2Δν@peak=C I0¯2 H2Δν@peak,

Metrics