B. Yang, D. Gottlieb, J. S. Hesthaven, “Spectral simulations of electromagnetic wave scattering,” J. Comput. Phys. 134, 216–230 (1997).

[CrossRef]

R. W. Ziolkowski, “The incorporation of microscopic material models into the FDTD approach for ultrafast optical pulse simulations,” IEEE Trans. Antennas Propag. 45, 375–391 (1997).

[CrossRef]

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997).

[CrossRef]

L. Lading, C. D. Hansen, E. Rasmussen, “Surface light scattering: integrated technology and signal processing,” Appl. Opt. 36, 7593–7600 (1997).

[CrossRef]

M. S. Mirotznik, D. W. Prather, J. N. Mait, “A hybrid finite element-boundary element method for the analysis of diffractive elements,” J. Mod. Opt. 43, 1309–1321 (1996).

[CrossRef]

J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, R. M. Joseph, A. Taflove, C. W. Tu, S. T. Ho, “Nanofabrication of 1-D photonic bandgap structures along a photonic wire,” IEEE Photon. Technol. Lett. 8, 491–493 (1996).

[CrossRef]

H. Y. D. Yang, “Finite difference analysis of 2-D photonic crystals,” IEEE Trans. Microwave Theory Tech. 44, 2688–2695 (1996).

[CrossRef]

H. Nishihara, S. Ura, T. Suhara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. LT-4, 913–918 (1986).

T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985).

[CrossRef]

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).

J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, R. M. Joseph, A. Taflove, C. W. Tu, S. T. Ho, “Nanofabrication of 1-D photonic bandgap structures along a photonic wire,” IEEE Photon. Technol. Lett. 8, 491–493 (1996).

[CrossRef]

J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, R. M. Joseph, A. Taflove, C. W. Tu, S. T. Ho, “Nanofabrication of 1-D photonic bandgap structures along a photonic wire,” IEEE Photon. Technol. Lett. 8, 491–493 (1996).

[CrossRef]

P. G. Dinesen, J. S. Hesthaven, J. P. Lynov, L. Lading, “Pseudo-spectral method for the analysis of diffractive optical elements,” submitted to J. Opt. Soc. Am. A.

B. Yang, D. Gottlieb, J. S. Hesthaven, “Spectral simulations of electromagnetic wave scattering,” J. Comput. Phys. 134, 216–230 (1997).

[CrossRef]

B. Yang, D. Gottlieb, J. S. Hesthaven, “On the use of PML ABC’s in spectral time-domain simulations of electromagnetic scattering,” in 13th Annual Review of Progress in Applied Computational Electromagnetics at the Naval Postgraduate School, A. Kishk, A. Glisson, eds., conference proceedings of the Applied Computational Electromagnetics Society (U. Mississippi Press, Jackson, Miss., 1997), pp. 926–933.

B. Yang, D. Gottlieb, J. S. Hesthaven, “Spectral simulations of electromagnetic wave scattering,” J. Comput. Phys. 134, 216–230 (1997).

[CrossRef]

B. Yang, D. Gottlieb, J. S. Hesthaven, “On the use of PML ABC’s in spectral time-domain simulations of electromagnetic scattering,” in 13th Annual Review of Progress in Applied Computational Electromagnetics at the Naval Postgraduate School, A. Kishk, A. Glisson, eds., conference proceedings of the Applied Computational Electromagnetics Society (U. Mississippi Press, Jackson, Miss., 1997), pp. 926–933.

P. G. Dinesen, J. S. Hesthaven, J. P. Lynov, L. Lading, “Pseudo-spectral method for the analysis of diffractive optical elements,” submitted to J. Opt. Soc. Am. A.

J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, R. M. Joseph, A. Taflove, C. W. Tu, S. T. Ho, “Nanofabrication of 1-D photonic bandgap structures along a photonic wire,” IEEE Photon. Technol. Lett. 8, 491–493 (1996).

[CrossRef]

J. Jin, The Finite Element Method in Electromagnetics (Wiley, New York, 1993).

J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, R. M. Joseph, A. Taflove, C. W. Tu, S. T. Ho, “Nanofabrication of 1-D photonic bandgap structures along a photonic wire,” IEEE Photon. Technol. Lett. 8, 491–493 (1996).

[CrossRef]

H. Nishihara, S. Ura, T. Suhara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. LT-4, 913–918 (1986).

L. Lading, C. D. Hansen, E. Rasmussen, “Surface light scattering: integrated technology and signal processing,” Appl. Opt. 36, 7593–7600 (1997).

[CrossRef]

P. G. Dinesen, J. S. Hesthaven, J. P. Lynov, L. Lading, “Pseudo-spectral method for the analysis of diffractive optical elements,” submitted to J. Opt. Soc. Am. A.

P. G. Dinesen, J. S. Hesthaven, J. P. Lynov, L. Lading, “Pseudo-spectral method for the analysis of diffractive optical elements,” submitted to J. Opt. Soc. Am. A.

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997).

[CrossRef]

M. S. Mirotznik, D. W. Prather, J. N. Mait, “A hybrid finite element-boundary element method for the analysis of diffractive elements,” J. Mod. Opt. 43, 1309–1321 (1996).

[CrossRef]

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997).

[CrossRef]

M. S. Mirotznik, D. W. Prather, J. N. Mait, “A hybrid finite element-boundary element method for the analysis of diffractive elements,” J. Mod. Opt. 43, 1309–1321 (1996).

[CrossRef]

M. G. Moharam, D. A. Pommet, E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A 11, 1827–1834 (1994).

[CrossRef]

T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985).

[CrossRef]

M. G. Moharam, T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385–1392 (1982).

[CrossRef]

H. Nishihara, S. Ura, T. Suhara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. LT-4, 913–918 (1986).

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997).

[CrossRef]

M. S. Mirotznik, D. W. Prather, J. N. Mait, “A hybrid finite element-boundary element method for the analysis of diffractive elements,” J. Mod. Opt. 43, 1309–1321 (1996).

[CrossRef]

S. Ramo, J. R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics, 3rd ed. (Wiley, New York, 1993).

H. Nishihara, S. Ura, T. Suhara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. LT-4, 913–918 (1986).

J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, R. M. Joseph, A. Taflove, C. W. Tu, S. T. Ho, “Nanofabrication of 1-D photonic bandgap structures along a photonic wire,” IEEE Photon. Technol. Lett. 8, 491–493 (1996).

[CrossRef]

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 1995).

T. Tamir, “Beam and waveguide couplers,” in Integrated Optics, 2nd. ed., T. Tamir, ed. (Springer-Verlag, New York, 1979), pp. 309–327.

J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, R. M. Joseph, A. Taflove, C. W. Tu, S. T. Ho, “Nanofabrication of 1-D photonic bandgap structures along a photonic wire,” IEEE Photon. Technol. Lett. 8, 491–493 (1996).

[CrossRef]

J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, R. M. Joseph, A. Taflove, C. W. Tu, S. T. Ho, “Nanofabrication of 1-D photonic bandgap structures along a photonic wire,” IEEE Photon. Technol. Lett. 8, 491–493 (1996).

[CrossRef]

H. Nishihara, S. Ura, T. Suhara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. LT-4, 913–918 (1986).

S. Ramo, J. R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics, 3rd ed. (Wiley, New York, 1993).

J. J. H. Wang, Generalized Moment Methods in Electromagnetics: Formulation and Computer Solution of Integral Equations (Wiley, New York, 1991).

S. Ramo, J. R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics, 3rd ed. (Wiley, New York, 1993).

J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, R. M. Joseph, A. Taflove, C. W. Tu, S. T. Ho, “Nanofabrication of 1-D photonic bandgap structures along a photonic wire,” IEEE Photon. Technol. Lett. 8, 491–493 (1996).

[CrossRef]

B. Yang, D. Gottlieb, J. S. Hesthaven, “Spectral simulations of electromagnetic wave scattering,” J. Comput. Phys. 134, 216–230 (1997).

[CrossRef]

B. Yang, D. Gottlieb, J. S. Hesthaven, “On the use of PML ABC’s in spectral time-domain simulations of electromagnetic scattering,” in 13th Annual Review of Progress in Applied Computational Electromagnetics at the Naval Postgraduate School, A. Kishk, A. Glisson, eds., conference proceedings of the Applied Computational Electromagnetics Society (U. Mississippi Press, Jackson, Miss., 1997), pp. 926–933.

H. Y. D. Yang, “Finite difference analysis of 2-D photonic crystals,” IEEE Trans. Microwave Theory Tech. 44, 2688–2695 (1996).

[CrossRef]

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).

J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, R. M. Joseph, A. Taflove, C. W. Tu, S. T. Ho, “Nanofabrication of 1-D photonic bandgap structures along a photonic wire,” IEEE Photon. Technol. Lett. 8, 491–493 (1996).

[CrossRef]

R. W. Ziolkowski, “The incorporation of microscopic material models into the FDTD approach for ultrafast optical pulse simulations,” IEEE Trans. Antennas Propag. 45, 375–391 (1997).

[CrossRef]

J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, R. M. Joseph, A. Taflove, C. W. Tu, S. T. Ho, “Nanofabrication of 1-D photonic bandgap structures along a photonic wire,” IEEE Photon. Technol. Lett. 8, 491–493 (1996).

[CrossRef]

R. W. Ziolkowski, “The incorporation of microscopic material models into the FDTD approach for ultrafast optical pulse simulations,” IEEE Trans. Antennas Propag. 45, 375–391 (1997).

[CrossRef]

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).

H. Y. D. Yang, “Finite difference analysis of 2-D photonic crystals,” IEEE Trans. Microwave Theory Tech. 44, 2688–2695 (1996).

[CrossRef]

B. Yang, D. Gottlieb, J. S. Hesthaven, “Spectral simulations of electromagnetic wave scattering,” J. Comput. Phys. 134, 216–230 (1997).

[CrossRef]

H. Nishihara, S. Ura, T. Suhara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. LT-4, 913–918 (1986).

M. S. Mirotznik, D. W. Prather, J. N. Mait, “A hybrid finite element-boundary element method for the analysis of diffractive elements,” J. Mod. Opt. 43, 1309–1321 (1996).

[CrossRef]

M. G. Moharam, D. A. Pommet, E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A 11, 1827–1834 (1994).

[CrossRef]

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997).

[CrossRef]

T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985).

[CrossRef]

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 1995).

P. G. Dinesen, J. S. Hesthaven, J. P. Lynov, L. Lading, “Pseudo-spectral method for the analysis of diffractive optical elements,” submitted to J. Opt. Soc. Am. A.

J. J. H. Wang, Generalized Moment Methods in Electromagnetics: Formulation and Computer Solution of Integral Equations (Wiley, New York, 1991).

J. Jin, The Finite Element Method in Electromagnetics (Wiley, New York, 1993).

B. Yang, D. Gottlieb, J. S. Hesthaven, “On the use of PML ABC’s in spectral time-domain simulations of electromagnetic scattering,” in 13th Annual Review of Progress in Applied Computational Electromagnetics at the Naval Postgraduate School, A. Kishk, A. Glisson, eds., conference proceedings of the Applied Computational Electromagnetics Society (U. Mississippi Press, Jackson, Miss., 1997), pp. 926–933.

S. Ramo, J. R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics, 3rd ed. (Wiley, New York, 1993).

T. Tamir, “Beam and waveguide couplers,” in Integrated Optics, 2nd. ed., T. Tamir, ed. (Springer-Verlag, New York, 1979), pp. 309–327.