Abstract

The angular distribution of forward-scattered light in transient-scattering-mode (TSM) and extended-scattering-mode (ESM) ferroelectric liquid-crystal (FLC) devices was evaluated by use of circularly polarized incident light. For both modes the intensity and the distribution of forward-scattered light depended primarily on the FLC birefringence, spontaneous polarization, and the cell path length. In the FLC materials examined, the forward-scattering intensity under ESM drive conditions increased with longer FLC pitch lengths, whereas under TSM conditions stronger forward scattering was observed with increasing FLC spontaneous polarization. Although both TSM and ESM drive conditions displayed a similar angular distribution for forward-scattered light, the intensity of ESM scattering over a 0°–6° range was considerably smaller than that observed in earlier experiments with linearly polarized incident light.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Gunning, J. Pasko, J. Tracy, “A liquid crystal tunable spectral filter: visible and infrared operation,” in Imaging Spectroscopy I, D. D. Norris, ed., Proc. SPIE268, 190–194 (1981).
    [CrossRef]
  2. P. Joffre, G. Illiaquer, J. P. Huignard, “Electro-optic properties of nematic liquid crystals for phase modulation in the infrared 10.6 µm,” in Electro-Optic and Magneto-Optic Materials and Applications, J. P. Castera, ed., Proc. SPIE1126, 13–20 (1989).
    [CrossRef]
  3. S.-T. Wu, R. J. Cox, “Potential infrared liquid crystals,” Liq. Cryst. 5, 1415 (1989).
    [CrossRef]
  4. S.-T. Wu, “Infrared properties of nematic liquid crystals: an overview,” Opt. Eng. 26, 120–128 (1987).
    [CrossRef]
  5. Y. Shi, “Liquid crystal infrared optics and applications,” in International Conference on Optoelectronic Science and Engineering ’90, D.-H. Wang, ed., Proc. SPIE1230, 58–60 (1990).
  6. V. A. Berenberg, V. V. Danilov, Yu. A. Reznikov, A. I. Sidorov, M. G. Tomilin, “Liquid crystals in laser optics,” Sov. J. Opt. Technol. 60, 487–500 (1993).
  7. S.-T. Wu, U. Finkenzeller, V. Reiffenrath, “Physical properties of diphenyldiacetylenic liquid crystals,” J. Appl. Phys. 65, 4372–4381 (1989).
    [CrossRef]
  8. R. E. Flannery, J. E. Miller, “Status of uncooled infrared imagers,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing III, G. C. Holst, ed., Proc. SPIE1689, 379–395 (1992).
  9. V. V. Danilov, O. B. Danilov, L. D. Zhukovskaya, A. A. Mak, I. E. Morichev, E. A. Morozovna, V. S. Mylnikov, D. A. Savel’ev, “Liquid crystal modulator operating at 10.6 µm,” Sov. J. Quantum Electron. 15, 1111–1114 (1985).
    [CrossRef]
  10. J. G. Pasko, J. Tracy, W. Elser, “Liquid crystal infrared modulation,” in Active Optical Devices, J. Tracy, ed., SPIE202, 82–89 (1979).
  11. I. C. Khoo, “Analysis of liquid crystal IR chopper,” , (U.S. Army Research Office, Research Triangle Park, N.C., 20March1988).
  12. J. W. McCargar, R. Ondris-Crawford, J. L. West, “Polymer dispersed liquid crystal infrared light shutter,” J. Electron. Imaging 1, 22–28 (1992).
    [CrossRef]
  13. K. Yoshino, M. Ozaki, “New electro-optic effect of microsecond response utilizing transient light scattering in ferroelectric liquid crystal,” Jpn. J. Appl. Phys. 23, L385–L387 (1984).
    [CrossRef]
  14. M. Ozaki, K. Yoshino, “Characteristics of high-speed electro-optic device using ferroelectric liquid crystal and effect of space charge,” Technol. Rep. Osaka Univ. 35, 53–60 (1985).
  15. K. Yoshino, M. Ozaki, T. Sakurai, M. Honma, “Dependence of switching and memory times of optical switching elements utilizing ferroelectric liquid crystals on thickness of cell and material,” Jpn. J. Appl. Phys. 24, 59–62 (1985).
  16. K. Yoshino, M. Ozaki, “Characteristics of transient scattering in ferroelectric liquid crystals as functions of molecular structure, cell thickness and temperature and their applications,” Jpn. J. Appl. Phys. 24, 130–133 (1985).
  17. M. Ozaki, S. Kishio, K. Yoshino, “Characteristics of transient light scattering in ferroelectric liquid crystals,” Mol. Cryst. Liq. Cryst. 146, 251–264 (1987).
    [CrossRef]
  18. K. Yoshino, M. Ozaki, S. Kishio, “Characteristics of the electro-optic effect of ferroelectric liquid crystals in the infrared range,” Jpn. J. Appl. Phys. 24, 45–48 (1985).
  19. K. L. Marshall, S. D. Jacobs, J. E. Miller, “Midinfrared modulation through the use of field-induced scattering in ferroelectric liquid crystals,” Appl. Opt. 34, 6704–6713 (1995).
    [CrossRef] [PubMed]
  20. I.-C. Khoo, S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993), Vol. 1, p. 108.
  21. A. Tagawa, T. Hatai, K. Nakao, M. Ozaki, K. Yoshinio, “Angular dependence of transient light scattering in ferroelectric liquid crystal,” Jpn. J. Appl. Phys. 28, Suppl. 2, 133–135 (1989).
  22. J. Kobayashi, J. Kita, H. Moritake, K. Yoshino, “Advances in development IR modulators of ferroelectric liquid crystal utilizing transient light scattering effect,” Mol. Cryst. Liq. Cryst. 263, 595–605 (1995).
    [CrossRef]

1995 (2)

J. Kobayashi, J. Kita, H. Moritake, K. Yoshino, “Advances in development IR modulators of ferroelectric liquid crystal utilizing transient light scattering effect,” Mol. Cryst. Liq. Cryst. 263, 595–605 (1995).
[CrossRef]

K. L. Marshall, S. D. Jacobs, J. E. Miller, “Midinfrared modulation through the use of field-induced scattering in ferroelectric liquid crystals,” Appl. Opt. 34, 6704–6713 (1995).
[CrossRef] [PubMed]

1993 (1)

V. A. Berenberg, V. V. Danilov, Yu. A. Reznikov, A. I. Sidorov, M. G. Tomilin, “Liquid crystals in laser optics,” Sov. J. Opt. Technol. 60, 487–500 (1993).

1992 (1)

J. W. McCargar, R. Ondris-Crawford, J. L. West, “Polymer dispersed liquid crystal infrared light shutter,” J. Electron. Imaging 1, 22–28 (1992).
[CrossRef]

1989 (3)

S.-T. Wu, U. Finkenzeller, V. Reiffenrath, “Physical properties of diphenyldiacetylenic liquid crystals,” J. Appl. Phys. 65, 4372–4381 (1989).
[CrossRef]

S.-T. Wu, R. J. Cox, “Potential infrared liquid crystals,” Liq. Cryst. 5, 1415 (1989).
[CrossRef]

A. Tagawa, T. Hatai, K. Nakao, M. Ozaki, K. Yoshinio, “Angular dependence of transient light scattering in ferroelectric liquid crystal,” Jpn. J. Appl. Phys. 28, Suppl. 2, 133–135 (1989).

1987 (2)

M. Ozaki, S. Kishio, K. Yoshino, “Characteristics of transient light scattering in ferroelectric liquid crystals,” Mol. Cryst. Liq. Cryst. 146, 251–264 (1987).
[CrossRef]

S.-T. Wu, “Infrared properties of nematic liquid crystals: an overview,” Opt. Eng. 26, 120–128 (1987).
[CrossRef]

1985 (5)

V. V. Danilov, O. B. Danilov, L. D. Zhukovskaya, A. A. Mak, I. E. Morichev, E. A. Morozovna, V. S. Mylnikov, D. A. Savel’ev, “Liquid crystal modulator operating at 10.6 µm,” Sov. J. Quantum Electron. 15, 1111–1114 (1985).
[CrossRef]

M. Ozaki, K. Yoshino, “Characteristics of high-speed electro-optic device using ferroelectric liquid crystal and effect of space charge,” Technol. Rep. Osaka Univ. 35, 53–60 (1985).

K. Yoshino, M. Ozaki, T. Sakurai, M. Honma, “Dependence of switching and memory times of optical switching elements utilizing ferroelectric liquid crystals on thickness of cell and material,” Jpn. J. Appl. Phys. 24, 59–62 (1985).

K. Yoshino, M. Ozaki, “Characteristics of transient scattering in ferroelectric liquid crystals as functions of molecular structure, cell thickness and temperature and their applications,” Jpn. J. Appl. Phys. 24, 130–133 (1985).

K. Yoshino, M. Ozaki, S. Kishio, “Characteristics of the electro-optic effect of ferroelectric liquid crystals in the infrared range,” Jpn. J. Appl. Phys. 24, 45–48 (1985).

1984 (1)

K. Yoshino, M. Ozaki, “New electro-optic effect of microsecond response utilizing transient light scattering in ferroelectric liquid crystal,” Jpn. J. Appl. Phys. 23, L385–L387 (1984).
[CrossRef]

Berenberg, V. A.

V. A. Berenberg, V. V. Danilov, Yu. A. Reznikov, A. I. Sidorov, M. G. Tomilin, “Liquid crystals in laser optics,” Sov. J. Opt. Technol. 60, 487–500 (1993).

Cox, R. J.

S.-T. Wu, R. J. Cox, “Potential infrared liquid crystals,” Liq. Cryst. 5, 1415 (1989).
[CrossRef]

Danilov, O. B.

V. V. Danilov, O. B. Danilov, L. D. Zhukovskaya, A. A. Mak, I. E. Morichev, E. A. Morozovna, V. S. Mylnikov, D. A. Savel’ev, “Liquid crystal modulator operating at 10.6 µm,” Sov. J. Quantum Electron. 15, 1111–1114 (1985).
[CrossRef]

Danilov, V. V.

V. A. Berenberg, V. V. Danilov, Yu. A. Reznikov, A. I. Sidorov, M. G. Tomilin, “Liquid crystals in laser optics,” Sov. J. Opt. Technol. 60, 487–500 (1993).

V. V. Danilov, O. B. Danilov, L. D. Zhukovskaya, A. A. Mak, I. E. Morichev, E. A. Morozovna, V. S. Mylnikov, D. A. Savel’ev, “Liquid crystal modulator operating at 10.6 µm,” Sov. J. Quantum Electron. 15, 1111–1114 (1985).
[CrossRef]

Elser, W.

J. G. Pasko, J. Tracy, W. Elser, “Liquid crystal infrared modulation,” in Active Optical Devices, J. Tracy, ed., SPIE202, 82–89 (1979).

Finkenzeller, U.

S.-T. Wu, U. Finkenzeller, V. Reiffenrath, “Physical properties of diphenyldiacetylenic liquid crystals,” J. Appl. Phys. 65, 4372–4381 (1989).
[CrossRef]

Flannery, R. E.

R. E. Flannery, J. E. Miller, “Status of uncooled infrared imagers,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing III, G. C. Holst, ed., Proc. SPIE1689, 379–395 (1992).

Gunning, W.

W. Gunning, J. Pasko, J. Tracy, “A liquid crystal tunable spectral filter: visible and infrared operation,” in Imaging Spectroscopy I, D. D. Norris, ed., Proc. SPIE268, 190–194 (1981).
[CrossRef]

Hatai, T.

A. Tagawa, T. Hatai, K. Nakao, M. Ozaki, K. Yoshinio, “Angular dependence of transient light scattering in ferroelectric liquid crystal,” Jpn. J. Appl. Phys. 28, Suppl. 2, 133–135 (1989).

Honma, M.

K. Yoshino, M. Ozaki, T. Sakurai, M. Honma, “Dependence of switching and memory times of optical switching elements utilizing ferroelectric liquid crystals on thickness of cell and material,” Jpn. J. Appl. Phys. 24, 59–62 (1985).

Huignard, J. P.

P. Joffre, G. Illiaquer, J. P. Huignard, “Electro-optic properties of nematic liquid crystals for phase modulation in the infrared 10.6 µm,” in Electro-Optic and Magneto-Optic Materials and Applications, J. P. Castera, ed., Proc. SPIE1126, 13–20 (1989).
[CrossRef]

Illiaquer, G.

P. Joffre, G. Illiaquer, J. P. Huignard, “Electro-optic properties of nematic liquid crystals for phase modulation in the infrared 10.6 µm,” in Electro-Optic and Magneto-Optic Materials and Applications, J. P. Castera, ed., Proc. SPIE1126, 13–20 (1989).
[CrossRef]

Jacobs, S. D.

Joffre, P.

P. Joffre, G. Illiaquer, J. P. Huignard, “Electro-optic properties of nematic liquid crystals for phase modulation in the infrared 10.6 µm,” in Electro-Optic and Magneto-Optic Materials and Applications, J. P. Castera, ed., Proc. SPIE1126, 13–20 (1989).
[CrossRef]

Khoo, I. C.

I. C. Khoo, “Analysis of liquid crystal IR chopper,” , (U.S. Army Research Office, Research Triangle Park, N.C., 20March1988).

Khoo, I.-C.

I.-C. Khoo, S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993), Vol. 1, p. 108.

Kishio, S.

M. Ozaki, S. Kishio, K. Yoshino, “Characteristics of transient light scattering in ferroelectric liquid crystals,” Mol. Cryst. Liq. Cryst. 146, 251–264 (1987).
[CrossRef]

K. Yoshino, M. Ozaki, S. Kishio, “Characteristics of the electro-optic effect of ferroelectric liquid crystals in the infrared range,” Jpn. J. Appl. Phys. 24, 45–48 (1985).

Kita, J.

J. Kobayashi, J. Kita, H. Moritake, K. Yoshino, “Advances in development IR modulators of ferroelectric liquid crystal utilizing transient light scattering effect,” Mol. Cryst. Liq. Cryst. 263, 595–605 (1995).
[CrossRef]

Kobayashi, J.

J. Kobayashi, J. Kita, H. Moritake, K. Yoshino, “Advances in development IR modulators of ferroelectric liquid crystal utilizing transient light scattering effect,” Mol. Cryst. Liq. Cryst. 263, 595–605 (1995).
[CrossRef]

Mak, A. A.

V. V. Danilov, O. B. Danilov, L. D. Zhukovskaya, A. A. Mak, I. E. Morichev, E. A. Morozovna, V. S. Mylnikov, D. A. Savel’ev, “Liquid crystal modulator operating at 10.6 µm,” Sov. J. Quantum Electron. 15, 1111–1114 (1985).
[CrossRef]

Marshall, K. L.

McCargar, J. W.

J. W. McCargar, R. Ondris-Crawford, J. L. West, “Polymer dispersed liquid crystal infrared light shutter,” J. Electron. Imaging 1, 22–28 (1992).
[CrossRef]

Miller, J. E.

K. L. Marshall, S. D. Jacobs, J. E. Miller, “Midinfrared modulation through the use of field-induced scattering in ferroelectric liquid crystals,” Appl. Opt. 34, 6704–6713 (1995).
[CrossRef] [PubMed]

R. E. Flannery, J. E. Miller, “Status of uncooled infrared imagers,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing III, G. C. Holst, ed., Proc. SPIE1689, 379–395 (1992).

Morichev, I. E.

V. V. Danilov, O. B. Danilov, L. D. Zhukovskaya, A. A. Mak, I. E. Morichev, E. A. Morozovna, V. S. Mylnikov, D. A. Savel’ev, “Liquid crystal modulator operating at 10.6 µm,” Sov. J. Quantum Electron. 15, 1111–1114 (1985).
[CrossRef]

Moritake, H.

J. Kobayashi, J. Kita, H. Moritake, K. Yoshino, “Advances in development IR modulators of ferroelectric liquid crystal utilizing transient light scattering effect,” Mol. Cryst. Liq. Cryst. 263, 595–605 (1995).
[CrossRef]

Morozovna, E. A.

V. V. Danilov, O. B. Danilov, L. D. Zhukovskaya, A. A. Mak, I. E. Morichev, E. A. Morozovna, V. S. Mylnikov, D. A. Savel’ev, “Liquid crystal modulator operating at 10.6 µm,” Sov. J. Quantum Electron. 15, 1111–1114 (1985).
[CrossRef]

Mylnikov, V. S.

V. V. Danilov, O. B. Danilov, L. D. Zhukovskaya, A. A. Mak, I. E. Morichev, E. A. Morozovna, V. S. Mylnikov, D. A. Savel’ev, “Liquid crystal modulator operating at 10.6 µm,” Sov. J. Quantum Electron. 15, 1111–1114 (1985).
[CrossRef]

Nakao, K.

A. Tagawa, T. Hatai, K. Nakao, M. Ozaki, K. Yoshinio, “Angular dependence of transient light scattering in ferroelectric liquid crystal,” Jpn. J. Appl. Phys. 28, Suppl. 2, 133–135 (1989).

Ondris-Crawford, R.

J. W. McCargar, R. Ondris-Crawford, J. L. West, “Polymer dispersed liquid crystal infrared light shutter,” J. Electron. Imaging 1, 22–28 (1992).
[CrossRef]

Ozaki, M.

A. Tagawa, T. Hatai, K. Nakao, M. Ozaki, K. Yoshinio, “Angular dependence of transient light scattering in ferroelectric liquid crystal,” Jpn. J. Appl. Phys. 28, Suppl. 2, 133–135 (1989).

M. Ozaki, S. Kishio, K. Yoshino, “Characteristics of transient light scattering in ferroelectric liquid crystals,” Mol. Cryst. Liq. Cryst. 146, 251–264 (1987).
[CrossRef]

K. Yoshino, M. Ozaki, S. Kishio, “Characteristics of the electro-optic effect of ferroelectric liquid crystals in the infrared range,” Jpn. J. Appl. Phys. 24, 45–48 (1985).

M. Ozaki, K. Yoshino, “Characteristics of high-speed electro-optic device using ferroelectric liquid crystal and effect of space charge,” Technol. Rep. Osaka Univ. 35, 53–60 (1985).

K. Yoshino, M. Ozaki, “Characteristics of transient scattering in ferroelectric liquid crystals as functions of molecular structure, cell thickness and temperature and their applications,” Jpn. J. Appl. Phys. 24, 130–133 (1985).

K. Yoshino, M. Ozaki, T. Sakurai, M. Honma, “Dependence of switching and memory times of optical switching elements utilizing ferroelectric liquid crystals on thickness of cell and material,” Jpn. J. Appl. Phys. 24, 59–62 (1985).

K. Yoshino, M. Ozaki, “New electro-optic effect of microsecond response utilizing transient light scattering in ferroelectric liquid crystal,” Jpn. J. Appl. Phys. 23, L385–L387 (1984).
[CrossRef]

Pasko, J.

W. Gunning, J. Pasko, J. Tracy, “A liquid crystal tunable spectral filter: visible and infrared operation,” in Imaging Spectroscopy I, D. D. Norris, ed., Proc. SPIE268, 190–194 (1981).
[CrossRef]

Pasko, J. G.

J. G. Pasko, J. Tracy, W. Elser, “Liquid crystal infrared modulation,” in Active Optical Devices, J. Tracy, ed., SPIE202, 82–89 (1979).

Reiffenrath, V.

S.-T. Wu, U. Finkenzeller, V. Reiffenrath, “Physical properties of diphenyldiacetylenic liquid crystals,” J. Appl. Phys. 65, 4372–4381 (1989).
[CrossRef]

Reznikov, Yu. A.

V. A. Berenberg, V. V. Danilov, Yu. A. Reznikov, A. I. Sidorov, M. G. Tomilin, “Liquid crystals in laser optics,” Sov. J. Opt. Technol. 60, 487–500 (1993).

Sakurai, T.

K. Yoshino, M. Ozaki, T. Sakurai, M. Honma, “Dependence of switching and memory times of optical switching elements utilizing ferroelectric liquid crystals on thickness of cell and material,” Jpn. J. Appl. Phys. 24, 59–62 (1985).

Savel’ev, D. A.

V. V. Danilov, O. B. Danilov, L. D. Zhukovskaya, A. A. Mak, I. E. Morichev, E. A. Morozovna, V. S. Mylnikov, D. A. Savel’ev, “Liquid crystal modulator operating at 10.6 µm,” Sov. J. Quantum Electron. 15, 1111–1114 (1985).
[CrossRef]

Shi, Y.

Y. Shi, “Liquid crystal infrared optics and applications,” in International Conference on Optoelectronic Science and Engineering ’90, D.-H. Wang, ed., Proc. SPIE1230, 58–60 (1990).

Sidorov, A. I.

V. A. Berenberg, V. V. Danilov, Yu. A. Reznikov, A. I. Sidorov, M. G. Tomilin, “Liquid crystals in laser optics,” Sov. J. Opt. Technol. 60, 487–500 (1993).

Tagawa, A.

A. Tagawa, T. Hatai, K. Nakao, M. Ozaki, K. Yoshinio, “Angular dependence of transient light scattering in ferroelectric liquid crystal,” Jpn. J. Appl. Phys. 28, Suppl. 2, 133–135 (1989).

Tomilin, M. G.

V. A. Berenberg, V. V. Danilov, Yu. A. Reznikov, A. I. Sidorov, M. G. Tomilin, “Liquid crystals in laser optics,” Sov. J. Opt. Technol. 60, 487–500 (1993).

Tracy, J.

J. G. Pasko, J. Tracy, W. Elser, “Liquid crystal infrared modulation,” in Active Optical Devices, J. Tracy, ed., SPIE202, 82–89 (1979).

W. Gunning, J. Pasko, J. Tracy, “A liquid crystal tunable spectral filter: visible and infrared operation,” in Imaging Spectroscopy I, D. D. Norris, ed., Proc. SPIE268, 190–194 (1981).
[CrossRef]

West, J. L.

J. W. McCargar, R. Ondris-Crawford, J. L. West, “Polymer dispersed liquid crystal infrared light shutter,” J. Electron. Imaging 1, 22–28 (1992).
[CrossRef]

Wu, S. T.

I.-C. Khoo, S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993), Vol. 1, p. 108.

Wu, S.-T.

S.-T. Wu, U. Finkenzeller, V. Reiffenrath, “Physical properties of diphenyldiacetylenic liquid crystals,” J. Appl. Phys. 65, 4372–4381 (1989).
[CrossRef]

S.-T. Wu, R. J. Cox, “Potential infrared liquid crystals,” Liq. Cryst. 5, 1415 (1989).
[CrossRef]

S.-T. Wu, “Infrared properties of nematic liquid crystals: an overview,” Opt. Eng. 26, 120–128 (1987).
[CrossRef]

Yoshinio, K.

A. Tagawa, T. Hatai, K. Nakao, M. Ozaki, K. Yoshinio, “Angular dependence of transient light scattering in ferroelectric liquid crystal,” Jpn. J. Appl. Phys. 28, Suppl. 2, 133–135 (1989).

Yoshino, K.

J. Kobayashi, J. Kita, H. Moritake, K. Yoshino, “Advances in development IR modulators of ferroelectric liquid crystal utilizing transient light scattering effect,” Mol. Cryst. Liq. Cryst. 263, 595–605 (1995).
[CrossRef]

M. Ozaki, S. Kishio, K. Yoshino, “Characteristics of transient light scattering in ferroelectric liquid crystals,” Mol. Cryst. Liq. Cryst. 146, 251–264 (1987).
[CrossRef]

K. Yoshino, M. Ozaki, S. Kishio, “Characteristics of the electro-optic effect of ferroelectric liquid crystals in the infrared range,” Jpn. J. Appl. Phys. 24, 45–48 (1985).

M. Ozaki, K. Yoshino, “Characteristics of high-speed electro-optic device using ferroelectric liquid crystal and effect of space charge,” Technol. Rep. Osaka Univ. 35, 53–60 (1985).

K. Yoshino, M. Ozaki, T. Sakurai, M. Honma, “Dependence of switching and memory times of optical switching elements utilizing ferroelectric liquid crystals on thickness of cell and material,” Jpn. J. Appl. Phys. 24, 59–62 (1985).

K. Yoshino, M. Ozaki, “Characteristics of transient scattering in ferroelectric liquid crystals as functions of molecular structure, cell thickness and temperature and their applications,” Jpn. J. Appl. Phys. 24, 130–133 (1985).

K. Yoshino, M. Ozaki, “New electro-optic effect of microsecond response utilizing transient light scattering in ferroelectric liquid crystal,” Jpn. J. Appl. Phys. 23, L385–L387 (1984).
[CrossRef]

Zhukovskaya, L. D.

V. V. Danilov, O. B. Danilov, L. D. Zhukovskaya, A. A. Mak, I. E. Morichev, E. A. Morozovna, V. S. Mylnikov, D. A. Savel’ev, “Liquid crystal modulator operating at 10.6 µm,” Sov. J. Quantum Electron. 15, 1111–1114 (1985).
[CrossRef]

Appl. Opt. (1)

J. Appl. Phys. (1)

S.-T. Wu, U. Finkenzeller, V. Reiffenrath, “Physical properties of diphenyldiacetylenic liquid crystals,” J. Appl. Phys. 65, 4372–4381 (1989).
[CrossRef]

J. Electron. Imaging (1)

J. W. McCargar, R. Ondris-Crawford, J. L. West, “Polymer dispersed liquid crystal infrared light shutter,” J. Electron. Imaging 1, 22–28 (1992).
[CrossRef]

Jpn. J. Appl. Phys. (5)

K. Yoshino, M. Ozaki, “New electro-optic effect of microsecond response utilizing transient light scattering in ferroelectric liquid crystal,” Jpn. J. Appl. Phys. 23, L385–L387 (1984).
[CrossRef]

K. Yoshino, M. Ozaki, T. Sakurai, M. Honma, “Dependence of switching and memory times of optical switching elements utilizing ferroelectric liquid crystals on thickness of cell and material,” Jpn. J. Appl. Phys. 24, 59–62 (1985).

K. Yoshino, M. Ozaki, “Characteristics of transient scattering in ferroelectric liquid crystals as functions of molecular structure, cell thickness and temperature and their applications,” Jpn. J. Appl. Phys. 24, 130–133 (1985).

K. Yoshino, M. Ozaki, S. Kishio, “Characteristics of the electro-optic effect of ferroelectric liquid crystals in the infrared range,” Jpn. J. Appl. Phys. 24, 45–48 (1985).

A. Tagawa, T. Hatai, K. Nakao, M. Ozaki, K. Yoshinio, “Angular dependence of transient light scattering in ferroelectric liquid crystal,” Jpn. J. Appl. Phys. 28, Suppl. 2, 133–135 (1989).

Liq. Cryst. (1)

S.-T. Wu, R. J. Cox, “Potential infrared liquid crystals,” Liq. Cryst. 5, 1415 (1989).
[CrossRef]

Mol. Cryst. Liq. Cryst. (2)

J. Kobayashi, J. Kita, H. Moritake, K. Yoshino, “Advances in development IR modulators of ferroelectric liquid crystal utilizing transient light scattering effect,” Mol. Cryst. Liq. Cryst. 263, 595–605 (1995).
[CrossRef]

M. Ozaki, S. Kishio, K. Yoshino, “Characteristics of transient light scattering in ferroelectric liquid crystals,” Mol. Cryst. Liq. Cryst. 146, 251–264 (1987).
[CrossRef]

Opt. Eng. (1)

S.-T. Wu, “Infrared properties of nematic liquid crystals: an overview,” Opt. Eng. 26, 120–128 (1987).
[CrossRef]

Sov. J. Opt. Technol. (1)

V. A. Berenberg, V. V. Danilov, Yu. A. Reznikov, A. I. Sidorov, M. G. Tomilin, “Liquid crystals in laser optics,” Sov. J. Opt. Technol. 60, 487–500 (1993).

Sov. J. Quantum Electron. (1)

V. V. Danilov, O. B. Danilov, L. D. Zhukovskaya, A. A. Mak, I. E. Morichev, E. A. Morozovna, V. S. Mylnikov, D. A. Savel’ev, “Liquid crystal modulator operating at 10.6 µm,” Sov. J. Quantum Electron. 15, 1111–1114 (1985).
[CrossRef]

Technol. Rep. Osaka Univ. (1)

M. Ozaki, K. Yoshino, “Characteristics of high-speed electro-optic device using ferroelectric liquid crystal and effect of space charge,” Technol. Rep. Osaka Univ. 35, 53–60 (1985).

Other (7)

I.-C. Khoo, S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993), Vol. 1, p. 108.

J. G. Pasko, J. Tracy, W. Elser, “Liquid crystal infrared modulation,” in Active Optical Devices, J. Tracy, ed., SPIE202, 82–89 (1979).

I. C. Khoo, “Analysis of liquid crystal IR chopper,” , (U.S. Army Research Office, Research Triangle Park, N.C., 20March1988).

R. E. Flannery, J. E. Miller, “Status of uncooled infrared imagers,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing III, G. C. Holst, ed., Proc. SPIE1689, 379–395 (1992).

Y. Shi, “Liquid crystal infrared optics and applications,” in International Conference on Optoelectronic Science and Engineering ’90, D.-H. Wang, ed., Proc. SPIE1230, 58–60 (1990).

W. Gunning, J. Pasko, J. Tracy, “A liquid crystal tunable spectral filter: visible and infrared operation,” in Imaging Spectroscopy I, D. D. Norris, ed., Proc. SPIE268, 190–194 (1981).
[CrossRef]

P. Joffre, G. Illiaquer, J. P. Huignard, “Electro-optic properties of nematic liquid crystals for phase modulation in the infrared 10.6 µm,” in Electro-Optic and Magneto-Optic Materials and Applications, J. P. Castera, ed., Proc. SPIE1126, 13–20 (1989).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Simplified schematic representation of an uncooled BST focal-plane-array imaging device. The motor-driven germanium chopper disk contains a series of lenslet arrays ground into its surface at various positions to diffuse and transmit incident IR radiation alternately.

Fig. 2
Fig. 2

TSM in FLC’s: (a) With no field applied, the helix axis lies parallel to the substrates, producing a weakly scattering texture. (b) Application of a dc field causes the helix to unwind, rendering the cell highly transparent. (c) Rapid reversal of the dc field polarity causes intense transient light scattering to occur as the FLC domains align with the new field direction. LC, liquid crystal; ITO, indium tin oxide.

Fig. 3
Fig. 3

Diagram of the experimental setup used to measure angular scattering for FLC devices operating in both the TSM and the ESM modes. The integrating sphere can be rotated through a range of angles of ±60° about the normal to the FLC substrate surface.

Fig. 4
Fig. 4

Electro-optical response of ZLI-4003 in the TSM. The cell path length was 25 µm.

Fig. 5
Fig. 5

(a) Angular-scattering behavior of SCE-9 and ZLI-4139 FLC cells with a 10-µm path length and operated in the TSM mode. The applied voltage per unit path length for each device is shown in the figure. (b) Angular-scattering behavior of SCE-9 (24 µm), ZLI-4139 (22 µm), and ZLI-4003 (24 µm) FLC cells in the TSM mode. The applied voltage per unit path length for each device is shown in the figure.

Fig. 6
Fig. 6

Electro-optical response of the 25-µm-thick ZLI-4003 cell in the ESM. An expanded view of the drive waveform used for the measurement is also included.

Fig. 7
Fig. 7

(a) Angular-scattering behavior of SCE-9 and ZLI-4139 FLC cells with a 10-µm path length operated in the ESM mode. These data were obtained with the driving waveform shown in Fig. 6. (b) Angular-scattering behavior of SCE-9 (24 µm), ZLI-4139 (22 µm), and ZLI-4003 (24 µm) FLC cells in the ESM mode. V-app., applied voltage.

Fig. 8
Fig. 8

Comparison of angular-scattering behaviors in the TSM and the ESM modes for the ZLI-4139 FLC cell with a 10-µm path length. The same 10-V/µm applied-field strength was used in both driving modes.

Tables (2)

Tables Icon

Table 1 Angular-Scattering Response Data Obtained from FLC Cells Composed of Various Materials and with Different Path Lengths Operated in the TSM Mode

Tables Icon

Table 2 Angular-Scattering Response Data Obtained from FLC Cells Composed of Various Materials and with Different Path Lengths Operated in the ESM Mode

Metrics