Abstract

I propose a novel filter monochromator for image spectroscopic measurements. An aberration-corrected double monochromator that I reported on previously [Appl. Opt. 36, 7114–7118 (1997)] is modified for use in a zero-dispersion mode. An incident image on the entrance aperture is focused onto an imaging detector attached on the exit focal plane with a spectral bandwidth determined by the width of the intermediate slit. Unlike a conventional interference filter, the spectral bandwidth and its center wavelength are determined arbitrarily while both a low stray-light level and the sharp cutoff characteristics of the wavelength are maintained. To demonstrate the real capabilities, ray-tracing simulations are carried out. I also discuss the problem of wavelength purity in the spectroscopic image.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Harthcock, S. C. Atkin, “Imaging with functional group maps using infrared microspectroscopy,” Appl. Spectrosc. 42, 449–455 (1988).
    [CrossRef]
  2. C. J. De Grauw, C. Otto, J. Greve, “Line-scan Raman microspectrometry for biological applications,” Appl. Spectrosc. 51, 1607–1612 (1997).
    [CrossRef]
  3. A. Garton, D. N. Batchelder, C. Cheng, “Raman microscopy of polymer blends,” Appl. Spectrosc. 47, 922–927 (1993).
    [CrossRef]
  4. G. J. Puppels, M. Grond, J. Greve, “Direct imaging Raman microscope based on tunable wavelength excitation and narrow-band emission detection,” Appl. Spectrosc. 47, 1256–1267 (1993).
    [CrossRef]
  5. O. B. Vasilyev, A. Leyva, A. Muhila, M. Valdes, R. Peralta, A. P. Kovalenco, R. M. Welch, T. A. Berendes, V. Y. Isakov, Y. P. Kulikouskiy, S. S. Sokolov, N. N. Strepanov, S. S. Gulidov, W. Von Hoyningen-Huuene, “Spectrometer with wedge interference filters (SWIF): measurement of the spectral optical depths at Mauna Loa Observatory,” Appl. Opt. 34, 4426–4436 (1995).
    [CrossRef] [PubMed]
  6. P. B. Hays, V. J. Abreu, M. D. Dobbs, D. A. Gell, H. J. Grassl, W. R. Skinner, “The high-resolution Doppler imager on the upper atmosphere research satellite,” J. Geophys. Res. 98, 10713–10723 (1993).
    [CrossRef]
  7. M. Descour, E. Dereniak, “Computed-tomography imaging spectrometer: experimental calibration and reconstruction results,” Appl. Opt. 34, 4817–4826 (1995).
    [CrossRef] [PubMed]
  8. M. R. Descour, C. E. Volin, E. L. Dereniak, K. J. Thome, A. B. Schumacher, D. W. Wilson, P. D. Maker, “Demonstration of a high-speed nonscanning imaging spectrometer,” Opt. Lett. 22, 1271–1273 (1997).
    [CrossRef] [PubMed]
  9. T. Okamoto, A. Takahashi, I. Yamaguchi, “Simultaneous acquisition of spectral and spatial intensity distribution,” Appl. Spectrosc. 47, 1198–1202 (1993).
    [CrossRef]
  10. T. Okamoto, I. Yamaguchi, “Simultaneous acquisition of spectral image information,” Opt. Lett. 16, 1277–1279 (1991).
    [CrossRef] [PubMed]
  11. E. N. Lewis, A. M. Gorbach, C. Marcott, I. W. Levin, “High-fidelity Fourier transform infrared spectroscopic imaging of primate brain tissue,” Appl. Spectrosc. 50, 263–269 (1996).
    [CrossRef]
  12. E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, I. W. Levin, “Fourier transform spectroscopic imaging using an infrared focal-plane array detector,” Anal. Chem. 67, 3377–3381 (1995).
    [CrossRef] [PubMed]
  13. E. N. Lewis, I. W. Levin, “Real-time, mid-infrared spectroscopic imaging microscopy using indium antimonide focal-plane array detection,” Appl. Spectrosc. 49, 672–678 (1995).
    [CrossRef]
  14. K. Itoh, Y. Ohtuka, “Fourier-transform spectral imaging: retrieval of source information from three-dimensional spatial coherence,” J. Opt. Soc. Am. A 3, 94–100 (1986).
    [CrossRef]
  15. K. Itoh, Y. Ohtuka, “Holographic spectral imaging,” J. Opt. Soc. Am. A 3, 1239–1242 (1986).
    [CrossRef]
  16. P. J. Treado, I. W. Levin, E. N. Lewis, “High-fidelity Raman imaging spectrometry: a rapid method using an acousto-optic tunable filter,” Appl. Spectrosc. 46, 1211–1216 (1992).
    [CrossRef]
  17. T. Iwata, H. Hisada, “Proposal for aberration-corrected imaging spectrograph,” Appl. Opt. 36, 7114–7118 (1997).
    [CrossRef]
  18. D. M. Pallister, A. Govil, M. D. Morris, W. S. Colburn, “Raman imaging system with dual holographic grating tunable filter,” Appl. Spectrosc. 48, 1015–1020 (1994).
    [CrossRef]
  19. P. A. Jansson, ed., Deconvolution of Images and Spectra (Academic, San Diego, Calif., 1997).

1997 (3)

1996 (1)

1995 (4)

1994 (1)

1993 (4)

1992 (1)

1991 (1)

1988 (1)

1986 (2)

Abreu, V. J.

P. B. Hays, V. J. Abreu, M. D. Dobbs, D. A. Gell, H. J. Grassl, W. R. Skinner, “The high-resolution Doppler imager on the upper atmosphere research satellite,” J. Geophys. Res. 98, 10713–10723 (1993).
[CrossRef]

Atkin, S. C.

Batchelder, D. N.

Berendes, T. A.

Cheng, C.

Colburn, W. S.

De Grauw, C. J.

Dereniak, E.

Dereniak, E. L.

Descour, M.

Descour, M. R.

Dobbs, M. D.

P. B. Hays, V. J. Abreu, M. D. Dobbs, D. A. Gell, H. J. Grassl, W. R. Skinner, “The high-resolution Doppler imager on the upper atmosphere research satellite,” J. Geophys. Res. 98, 10713–10723 (1993).
[CrossRef]

Dowrey, A. E.

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, I. W. Levin, “Fourier transform spectroscopic imaging using an infrared focal-plane array detector,” Anal. Chem. 67, 3377–3381 (1995).
[CrossRef] [PubMed]

Garton, A.

Gell, D. A.

P. B. Hays, V. J. Abreu, M. D. Dobbs, D. A. Gell, H. J. Grassl, W. R. Skinner, “The high-resolution Doppler imager on the upper atmosphere research satellite,” J. Geophys. Res. 98, 10713–10723 (1993).
[CrossRef]

Gorbach, A. M.

Govil, A.

Grassl, H. J.

P. B. Hays, V. J. Abreu, M. D. Dobbs, D. A. Gell, H. J. Grassl, W. R. Skinner, “The high-resolution Doppler imager on the upper atmosphere research satellite,” J. Geophys. Res. 98, 10713–10723 (1993).
[CrossRef]

Greve, J.

Grond, M.

Gulidov, S. S.

Harthcock, M. A.

Hays, P. B.

P. B. Hays, V. J. Abreu, M. D. Dobbs, D. A. Gell, H. J. Grassl, W. R. Skinner, “The high-resolution Doppler imager on the upper atmosphere research satellite,” J. Geophys. Res. 98, 10713–10723 (1993).
[CrossRef]

Hisada, H.

Isakov, V. Y.

Itoh, K.

Iwata, T.

Kovalenco, A. P.

Kulikouskiy, Y. P.

Levin, I. W.

Lewis, E. N.

Leyva, A.

Maker, P. D.

Marcott, C.

E. N. Lewis, A. M. Gorbach, C. Marcott, I. W. Levin, “High-fidelity Fourier transform infrared spectroscopic imaging of primate brain tissue,” Appl. Spectrosc. 50, 263–269 (1996).
[CrossRef]

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, I. W. Levin, “Fourier transform spectroscopic imaging using an infrared focal-plane array detector,” Anal. Chem. 67, 3377–3381 (1995).
[CrossRef] [PubMed]

Morris, M. D.

Muhila, A.

Ohtuka, Y.

Okamoto, T.

Otto, C.

Pallister, D. M.

Peralta, R.

Puppels, G. J.

Reeder, R. C.

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, I. W. Levin, “Fourier transform spectroscopic imaging using an infrared focal-plane array detector,” Anal. Chem. 67, 3377–3381 (1995).
[CrossRef] [PubMed]

Schumacher, A. B.

Skinner, W. R.

P. B. Hays, V. J. Abreu, M. D. Dobbs, D. A. Gell, H. J. Grassl, W. R. Skinner, “The high-resolution Doppler imager on the upper atmosphere research satellite,” J. Geophys. Res. 98, 10713–10723 (1993).
[CrossRef]

Sokolov, S. S.

Story, G. M.

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, I. W. Levin, “Fourier transform spectroscopic imaging using an infrared focal-plane array detector,” Anal. Chem. 67, 3377–3381 (1995).
[CrossRef] [PubMed]

Strepanov, N. N.

Takahashi, A.

Thome, K. J.

Treado, P. J.

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, I. W. Levin, “Fourier transform spectroscopic imaging using an infrared focal-plane array detector,” Anal. Chem. 67, 3377–3381 (1995).
[CrossRef] [PubMed]

P. J. Treado, I. W. Levin, E. N. Lewis, “High-fidelity Raman imaging spectrometry: a rapid method using an acousto-optic tunable filter,” Appl. Spectrosc. 46, 1211–1216 (1992).
[CrossRef]

Valdes, M.

Vasilyev, O. B.

Volin, C. E.

Von Hoyningen-Huuene, W.

Welch, R. M.

Wilson, D. W.

Yamaguchi, I.

Anal. Chem. (1)

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, I. W. Levin, “Fourier transform spectroscopic imaging using an infrared focal-plane array detector,” Anal. Chem. 67, 3377–3381 (1995).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Spectrosc. (9)

C. J. De Grauw, C. Otto, J. Greve, “Line-scan Raman microspectrometry for biological applications,” Appl. Spectrosc. 51, 1607–1612 (1997).
[CrossRef]

E. N. Lewis, A. M. Gorbach, C. Marcott, I. W. Levin, “High-fidelity Fourier transform infrared spectroscopic imaging of primate brain tissue,” Appl. Spectrosc. 50, 263–269 (1996).
[CrossRef]

E. N. Lewis, I. W. Levin, “Real-time, mid-infrared spectroscopic imaging microscopy using indium antimonide focal-plane array detection,” Appl. Spectrosc. 49, 672–678 (1995).
[CrossRef]

D. M. Pallister, A. Govil, M. D. Morris, W. S. Colburn, “Raman imaging system with dual holographic grating tunable filter,” Appl. Spectrosc. 48, 1015–1020 (1994).
[CrossRef]

P. J. Treado, I. W. Levin, E. N. Lewis, “High-fidelity Raman imaging spectrometry: a rapid method using an acousto-optic tunable filter,” Appl. Spectrosc. 46, 1211–1216 (1992).
[CrossRef]

T. Okamoto, A. Takahashi, I. Yamaguchi, “Simultaneous acquisition of spectral and spatial intensity distribution,” Appl. Spectrosc. 47, 1198–1202 (1993).
[CrossRef]

G. J. Puppels, M. Grond, J. Greve, “Direct imaging Raman microscope based on tunable wavelength excitation and narrow-band emission detection,” Appl. Spectrosc. 47, 1256–1267 (1993).
[CrossRef]

A. Garton, D. N. Batchelder, C. Cheng, “Raman microscopy of polymer blends,” Appl. Spectrosc. 47, 922–927 (1993).
[CrossRef]

M. A. Harthcock, S. C. Atkin, “Imaging with functional group maps using infrared microspectroscopy,” Appl. Spectrosc. 42, 449–455 (1988).
[CrossRef]

J. Geophys. Res. (1)

P. B. Hays, V. J. Abreu, M. D. Dobbs, D. A. Gell, H. J. Grassl, W. R. Skinner, “The high-resolution Doppler imager on the upper atmosphere research satellite,” J. Geophys. Res. 98, 10713–10723 (1993).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Lett. (2)

Other (1)

P. A. Jansson, ed., Deconvolution of Images and Spectra (Academic, San Diego, Calif., 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Conceptual illustrations of optics (top view) (a) for an aberration-corrected double monochromator17 and (b) for a zero-dispersion filter monochromator. The dashed lines indicate that the path of the principal rays is above the plane (see text).

Fig. 2
Fig. 2

Diagram of an aberration-corrected, zero-dispersion, filter monochromator for image spectroscopic measurements.

Fig. 3
Fig. 3

Plots (a) of two grating angles α as a function of wavelength and (b) of the spectral bandwidth Δλ [=D(λ)Δx] as a function of wavelength. Specifications of the filter monochromator are as follows: N = 1200 lines/mm, R = 1000 mm, θ = 6°, Δx = 6.0 mm, and m = 1.

Fig. 4
Fig. 4

Synthesized, spectroscopic test image for ray-tracing simulations. Here Δx = 6.0 mm. The size of each dot is exaggerated to clarify its position.

Fig. 5
Fig. 5

Spot diagrams obtained by tracing rays through the aberration-corrected, zero-dispersion filter monochromator. Specifications are the same as those in Fig. 2. Center wavelengths are (a) 580 nm (α = 26.48°), (b) 590 nm (α = 26.85°), (c) 600 nm (α = 27.22°), (d) 575 nm (α = 26.30°), (e) 585 nm (α = 26.67°), (f) 595 nm (α = 27.04°), and (g) 605 nm (α = 27.41°). The value of Δλ at λ = 590 nm is 8.97 nm.

Fig. 6
Fig. 6

Explanatory diagrams of (a) the SBW of the conventional interference filter and (b) that (Δλ) of the proposed filter monochromator as functions of x, y, and λ; x, coordinate along the wavelength dispersion; y, that along the slit height; λ0, center wavelength.

Fig. 7
Fig. 7

Explanatory diagrams for a procedure for eliminating the dependence of the center wavelength on the location of an incident image on the entrance aperture. After n measurements are carried out as shown in (a), a single spectroscopic image is synthesized from n partial images as shown in (b). Here n = 5 is shown as an example.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α=θ+sin-1mNλ2 cos θ
Dλ=cos αmNf,

Metrics