Abstract

We present a detailed discussion of how modulation measurement profilometry (MMP) is applied to measuring an object that has holes on its surface. MMP is not based on the conventional three-dimensional profilometry method with structured light triangulation but on modulation measurements; it has the advantage of measuring the surface of a test object by perpendicular projection, that is, the direction of the CCD camera is the same as that of the projecting light, and the wrapped phases need not be calculated. Thus the difficulties from shadows and spatial discontinuities in phase measurement profilometry and Fourier transform profilometry methods do not exist in MMP. Here we measure a wheellike object that is 31.5 mm thick with an outer diameter of 80 mm and an inner diameter of 20 mm. All the object seen with the CCD camera can be measured including the hole. Experimental results prove that this method is useful for three-dimensional profilometry measurement, especially for objects with discontinuous height steps and spatial isolation.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Srinivasan, H. C. Liu, M. Halioua, “Automated phase-measuring profilometry of 3-D diffuse objects,” Appl. Opt. 23, 3105–3108 (1984).
    [CrossRef] [PubMed]
  2. X.-Y. Su, W.-S. Zhou, G. von Bally, D. Vukicevic. “Automated phase-measuring profilometry using defocused projection of the Rochi grating,” Opt. Commun. 94, 561–573 (1992).
    [CrossRef]
  3. M. Takeda, K. Mutoh, “Fourier transform profilometry for the automatic measurement 3-D object shapes,” Appl. Opt. 22, 3977–3982 (1983).
    [CrossRef]
  4. X.-Y. Su, J. Li, L.-R. Guo, W.-Y. Su, “An improved Fourier transform profilometry,” in Optical Testing and Metrology II, C. Grover, ed., Proc. SPIE954, 32–35 (1988).
  5. H. Takasaki, “Moiré topography,” Appl. Opt. 9, 1467–1472 (1970).
    [CrossRef] [PubMed]
  6. I. Kaisto, J. Kostamovaara, M. Manninen, R. Myllyla, “Optical range finder for 1.5-10-m distances,” Appl. Opt. 22, 3258–3264 (1983).
    [CrossRef] [PubMed]
  7. T. Dresel, G. Hausler, H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919–925 (1992).
    [CrossRef] [PubMed]
  8. M. Takeda, H. Yamamoto, “Fourier-transform speckle profilometry: three-dimensional shape measurements of diffuse objects with large height steps and/or spatially isolated surfaces,” Appl. Opt. 33, 7829–7837 (1994).
    [CrossRef] [PubMed]
  9. T. Darrel, K. Wohn, “Pyramid based depth from focus,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (Institute of Electrical and Electronics Engineers, New York, 1988), pp. 504–509.
  10. R. A. Jarvis, “A perspective on range finding techniques for computer vision,” IEEE Trans. Pattern Anal. Machine Intell. 5, 122–139 (1983).
    [CrossRef]
  11. J. Ens, P. Lawrence, “A matrix based method for determining depth from focus,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (Institute of Electrical and Electronics Engineers, New York, 1991), pp. 600–609.
  12. A. Pentland, “A new sense for depth of field,” IEEE Trans. Pattern Anal. Machine Intell. 9, 523–531 (1987).
    [CrossRef]
  13. M. Watanabe, S. K. Nayar, M. Noguchi, “Real-time computation of depth from defocus,” in Three-Dimensional and Unconventional Imaging for Industrial Inspection and Metrology, M. R. Descour, K. G. Harding, D. J. Svetkoff, eds., Proc. SPIE2599, 14–25 (1996).
    [CrossRef]
  14. X.-Y. Su, L.-K. Su, W.-S. Li, L.-Q. Xiang, “A new 3-D profilometry based on modulation measurement,” in Automated Optical Inspection for Industry: Theory, Technology, and Applications II, S. Ye, ed., Proc. SPIE3558, 1–7 (1998).
    [CrossRef]

1994 (1)

1992 (2)

T. Dresel, G. Hausler, H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919–925 (1992).
[CrossRef] [PubMed]

X.-Y. Su, W.-S. Zhou, G. von Bally, D. Vukicevic. “Automated phase-measuring profilometry using defocused projection of the Rochi grating,” Opt. Commun. 94, 561–573 (1992).
[CrossRef]

1987 (1)

A. Pentland, “A new sense for depth of field,” IEEE Trans. Pattern Anal. Machine Intell. 9, 523–531 (1987).
[CrossRef]

1984 (1)

1983 (3)

1970 (1)

Darrel, T.

T. Darrel, K. Wohn, “Pyramid based depth from focus,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (Institute of Electrical and Electronics Engineers, New York, 1988), pp. 504–509.

Dresel, T.

Ens, J.

J. Ens, P. Lawrence, “A matrix based method for determining depth from focus,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (Institute of Electrical and Electronics Engineers, New York, 1991), pp. 600–609.

Guo, L.-R.

X.-Y. Su, J. Li, L.-R. Guo, W.-Y. Su, “An improved Fourier transform profilometry,” in Optical Testing and Metrology II, C. Grover, ed., Proc. SPIE954, 32–35 (1988).

Halioua, M.

Hausler, G.

Jarvis, R. A.

R. A. Jarvis, “A perspective on range finding techniques for computer vision,” IEEE Trans. Pattern Anal. Machine Intell. 5, 122–139 (1983).
[CrossRef]

Kaisto, I.

Kostamovaara, J.

Lawrence, P.

J. Ens, P. Lawrence, “A matrix based method for determining depth from focus,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (Institute of Electrical and Electronics Engineers, New York, 1991), pp. 600–609.

Li, J.

X.-Y. Su, J. Li, L.-R. Guo, W.-Y. Su, “An improved Fourier transform profilometry,” in Optical Testing and Metrology II, C. Grover, ed., Proc. SPIE954, 32–35 (1988).

Li, W.-S.

X.-Y. Su, L.-K. Su, W.-S. Li, L.-Q. Xiang, “A new 3-D profilometry based on modulation measurement,” in Automated Optical Inspection for Industry: Theory, Technology, and Applications II, S. Ye, ed., Proc. SPIE3558, 1–7 (1998).
[CrossRef]

Liu, H. C.

Manninen, M.

Mutoh, K.

Myllyla, R.

Nayar, S. K.

M. Watanabe, S. K. Nayar, M. Noguchi, “Real-time computation of depth from defocus,” in Three-Dimensional and Unconventional Imaging for Industrial Inspection and Metrology, M. R. Descour, K. G. Harding, D. J. Svetkoff, eds., Proc. SPIE2599, 14–25 (1996).
[CrossRef]

Noguchi, M.

M. Watanabe, S. K. Nayar, M. Noguchi, “Real-time computation of depth from defocus,” in Three-Dimensional and Unconventional Imaging for Industrial Inspection and Metrology, M. R. Descour, K. G. Harding, D. J. Svetkoff, eds., Proc. SPIE2599, 14–25 (1996).
[CrossRef]

Pentland, A.

A. Pentland, “A new sense for depth of field,” IEEE Trans. Pattern Anal. Machine Intell. 9, 523–531 (1987).
[CrossRef]

Srinivasan, V.

Su, L.-K.

X.-Y. Su, L.-K. Su, W.-S. Li, L.-Q. Xiang, “A new 3-D profilometry based on modulation measurement,” in Automated Optical Inspection for Industry: Theory, Technology, and Applications II, S. Ye, ed., Proc. SPIE3558, 1–7 (1998).
[CrossRef]

Su, W.-Y.

X.-Y. Su, J. Li, L.-R. Guo, W.-Y. Su, “An improved Fourier transform profilometry,” in Optical Testing and Metrology II, C. Grover, ed., Proc. SPIE954, 32–35 (1988).

Su, X.-Y.

X.-Y. Su, W.-S. Zhou, G. von Bally, D. Vukicevic. “Automated phase-measuring profilometry using defocused projection of the Rochi grating,” Opt. Commun. 94, 561–573 (1992).
[CrossRef]

X.-Y. Su, J. Li, L.-R. Guo, W.-Y. Su, “An improved Fourier transform profilometry,” in Optical Testing and Metrology II, C. Grover, ed., Proc. SPIE954, 32–35 (1988).

X.-Y. Su, L.-K. Su, W.-S. Li, L.-Q. Xiang, “A new 3-D profilometry based on modulation measurement,” in Automated Optical Inspection for Industry: Theory, Technology, and Applications II, S. Ye, ed., Proc. SPIE3558, 1–7 (1998).
[CrossRef]

Takasaki, H.

Takeda, M.

Venzke, H.

von Bally, G.

X.-Y. Su, W.-S. Zhou, G. von Bally, D. Vukicevic. “Automated phase-measuring profilometry using defocused projection of the Rochi grating,” Opt. Commun. 94, 561–573 (1992).
[CrossRef]

Vukicevic, D.

X.-Y. Su, W.-S. Zhou, G. von Bally, D. Vukicevic. “Automated phase-measuring profilometry using defocused projection of the Rochi grating,” Opt. Commun. 94, 561–573 (1992).
[CrossRef]

Watanabe, M.

M. Watanabe, S. K. Nayar, M. Noguchi, “Real-time computation of depth from defocus,” in Three-Dimensional and Unconventional Imaging for Industrial Inspection and Metrology, M. R. Descour, K. G. Harding, D. J. Svetkoff, eds., Proc. SPIE2599, 14–25 (1996).
[CrossRef]

Wohn, K.

T. Darrel, K. Wohn, “Pyramid based depth from focus,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (Institute of Electrical and Electronics Engineers, New York, 1988), pp. 504–509.

Xiang, L.-Q.

X.-Y. Su, L.-K. Su, W.-S. Li, L.-Q. Xiang, “A new 3-D profilometry based on modulation measurement,” in Automated Optical Inspection for Industry: Theory, Technology, and Applications II, S. Ye, ed., Proc. SPIE3558, 1–7 (1998).
[CrossRef]

Yamamoto, H.

Zhou, W.-S.

X.-Y. Su, W.-S. Zhou, G. von Bally, D. Vukicevic. “Automated phase-measuring profilometry using defocused projection of the Rochi grating,” Opt. Commun. 94, 561–573 (1992).
[CrossRef]

Appl. Opt. (6)

IEEE Trans. Pattern Anal. Machine Intell. (2)

R. A. Jarvis, “A perspective on range finding techniques for computer vision,” IEEE Trans. Pattern Anal. Machine Intell. 5, 122–139 (1983).
[CrossRef]

A. Pentland, “A new sense for depth of field,” IEEE Trans. Pattern Anal. Machine Intell. 9, 523–531 (1987).
[CrossRef]

Opt. Commun. (1)

X.-Y. Su, W.-S. Zhou, G. von Bally, D. Vukicevic. “Automated phase-measuring profilometry using defocused projection of the Rochi grating,” Opt. Commun. 94, 561–573 (1992).
[CrossRef]

Other (5)

T. Darrel, K. Wohn, “Pyramid based depth from focus,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (Institute of Electrical and Electronics Engineers, New York, 1988), pp. 504–509.

J. Ens, P. Lawrence, “A matrix based method for determining depth from focus,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (Institute of Electrical and Electronics Engineers, New York, 1991), pp. 600–609.

M. Watanabe, S. K. Nayar, M. Noguchi, “Real-time computation of depth from defocus,” in Three-Dimensional and Unconventional Imaging for Industrial Inspection and Metrology, M. R. Descour, K. G. Harding, D. J. Svetkoff, eds., Proc. SPIE2599, 14–25 (1996).
[CrossRef]

X.-Y. Su, L.-K. Su, W.-S. Li, L.-Q. Xiang, “A new 3-D profilometry based on modulation measurement,” in Automated Optical Inspection for Industry: Theory, Technology, and Applications II, S. Ye, ed., Proc. SPIE3558, 1–7 (1998).
[CrossRef]

X.-Y. Su, J. Li, L.-R. Guo, W.-Y. Su, “An improved Fourier transform profilometry,” in Optical Testing and Metrology II, C. Grover, ed., Proc. SPIE954, 32–35 (1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Projection system of a grating. (b) Computer simulation of the modulation distribution of a sinusoidal grating in front and in back of the imaging plane for one pixel.

Fig. 2
Fig. 2

Setup of the MMP system.

Fig. 3
Fig. 3

Projecting system during moving.

Fig. 4
Fig. 4

Modulation distribution.

Fig. 5
Fig. 5

(a) Fifth modulation map at a 40-mm distance; (b) 17th modulation map at an 83-mm distance.

Fig. 6
Fig. 6

Relation between the moving numbers and the distances between the reference and the scan planes.

Fig. 7
Fig. 7

The Measured modulation distribution of pixel (175, 150). The abscissa shows the distances between the reference and the scan planes; the ordinate shows the modulation values.

Fig. 8
Fig. 8

Measured modulation distribution of pixel (120, 140). The abscissa shows the distances between the reference and the scan planes; the ordinate shows the modulation values.

Fig. 9
Fig. 9

Measured profilometry with the MMP method.

Fig. 10
Fig. 10

Section map measured with MMP.

Fig. 11
Fig. 11

Upside-down map of the object measured.

Tables (3)

Tables Icon

Table 1 Experimental Parameters

Tables Icon

Table 2 Modulation Values of Pixel (175, 150)

Tables Icon

Table 3 Modulation Values of Pixel (120, 140)

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Ix, y=I0Bx, y1+Cx, ycos2πfx+ϕ0,
Iix, y=I0Bx, y1+Cx, ycos2πfx+2iπ/L+ϕ0.
Mx, y=i=1L Iix, ysin2iπ/L2+i=1L Iix, ycos2iπ/L21/2.
Mx, y=12 LI0Bx, yCx, y.
lt=lm-1+t-m-1lm-lm-1-l0,
t175, 150=i=719 i×modulationii=719modulationi =13.10.
height175, 150=l13+13.1-13l14-l13-l0=73+0.1×76.5-73-20=53.35 mm.
t120, 140=i=111 i×modulationii=111modulationi=5.26.
height120, 140=l5+5.26-5l6-l5-l0=40+0.26×43.5-40-20=20.85 mm.

Metrics