Abstract

A novel, to our knowledge, sapphire-fiber thermometer ranging from 20° to 1800 °C is presented that combines the radiance detection and the fluorescent lifetime detection schemes into one system. The thermal probe is a sapphire fiber grown from the laser-heated pedestal growth method. Its end part is doped with Cr3+ ion and coated with some radiance material to constitute a minifiber cavity. The sapphire fiber is coupled with a Y-shaped silica fiber bundle for signal transmission. Radiance and fluorescence signal processing schemes are also set up within one thermometer system. A sandwich two-band p-i-n detector is used that may respond to both the radiation and the fluorescence. Preliminary experimental results show that the thermometer is suitable for practical application with potential long-term stability and a high-temperature resolution.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Dils, “High-temperature optical fiber thermometer,” J. Appl. Phys. 54, 1198–1200 (1983).
    [CrossRef]
  2. R. R. Sholes, J. G. Small, “Fluorescent decay thermometer with biological applications,” Rev. Sci. Instrum. 51, 882–884 (1980).
    [CrossRef]
  3. K. T. V. Grattan, A. W. Palmer, Z. Zhang, “Development of a high-temperature fiber-optic thermometer probe using fluorescent decay,” Rev. Sci. Instrum. 62, 1210–1213 (1991).
    [CrossRef]
  4. Z. Zhang, K. T. V. Grattan, A. W. Palmer, “Fiber optic temperature sensor based on the cross referencing between radiation and fluorescent lifetime,” Rev. Sci. Instrum. 63, 3177–3181 (1992).
    [CrossRef]
  5. Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggit, “Potential for temperature sensor applications of highly neodymium-doped crystals and fiber at up to approximately 1000 °C,” Rev. Sci. Instrum. 68, 2759–2763 (1997).
    [CrossRef]
  6. Y. Shen, Y. Wang, L. Tong, L. Ye, “Novel sapphire fiber thermometer using fluorescent decay,” Sensors Actuators: A. Physical V71, 70–73 (1998).
  7. Y. Shen, R. Xu, “Development of a compact sapphire fiber thermometer probe using fluorescent decay,” in Fiber Optic Sensors V, K. Bennett, ed., Proc. SPIE2895, 144–150 (1996).
    [CrossRef]
  8. G. F. Imbusch, “Energy transfer in ruby,” Phys. Rev. 153, 326–337 (1967).
    [CrossRef]
  9. J. C. Murphy, L. C. Aamodt, C. K. Jen, “Energy transport in ruby via microwave-optical experiments,” Phys. Rev. B 9, 2009–2022 (1974).
    [CrossRef]
  10. M. A. El-Sherif, I. L. Kamel, F. K. Ko, M. Shaker, “A novel sapphire fiber-optic sensor for testing advanced ceramics,” Ceram. Eng. Sci. Proc. 14, 437–444 (1993).
    [CrossRef]
  11. L. Tong, Y. Shen, R. Xu, Z. Ding, “Study on frequency response characteristics of high-temperature fiber optic sensor head,” in Fiber Optic Sensors V, K. Bennett, ed., Proc. SPIE2895, 431–434 (1996).
    [CrossRef]
  12. Z. Zhang, K. T. V. Grattan, A. W. Palmer, “A novel signal processing scheme for a fluorescence based fiber-optic temperature sensor,” Rev. Sci. Instrum. 62, 1735–1742 (1991).
    [CrossRef]

1998 (1)

Y. Shen, Y. Wang, L. Tong, L. Ye, “Novel sapphire fiber thermometer using fluorescent decay,” Sensors Actuators: A. Physical V71, 70–73 (1998).

1997 (1)

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggit, “Potential for temperature sensor applications of highly neodymium-doped crystals and fiber at up to approximately 1000 °C,” Rev. Sci. Instrum. 68, 2759–2763 (1997).
[CrossRef]

1993 (1)

M. A. El-Sherif, I. L. Kamel, F. K. Ko, M. Shaker, “A novel sapphire fiber-optic sensor for testing advanced ceramics,” Ceram. Eng. Sci. Proc. 14, 437–444 (1993).
[CrossRef]

1992 (1)

Z. Zhang, K. T. V. Grattan, A. W. Palmer, “Fiber optic temperature sensor based on the cross referencing between radiation and fluorescent lifetime,” Rev. Sci. Instrum. 63, 3177–3181 (1992).
[CrossRef]

1991 (2)

K. T. V. Grattan, A. W. Palmer, Z. Zhang, “Development of a high-temperature fiber-optic thermometer probe using fluorescent decay,” Rev. Sci. Instrum. 62, 1210–1213 (1991).
[CrossRef]

Z. Zhang, K. T. V. Grattan, A. W. Palmer, “A novel signal processing scheme for a fluorescence based fiber-optic temperature sensor,” Rev. Sci. Instrum. 62, 1735–1742 (1991).
[CrossRef]

1983 (1)

R. R. Dils, “High-temperature optical fiber thermometer,” J. Appl. Phys. 54, 1198–1200 (1983).
[CrossRef]

1980 (1)

R. R. Sholes, J. G. Small, “Fluorescent decay thermometer with biological applications,” Rev. Sci. Instrum. 51, 882–884 (1980).
[CrossRef]

1974 (1)

J. C. Murphy, L. C. Aamodt, C. K. Jen, “Energy transport in ruby via microwave-optical experiments,” Phys. Rev. B 9, 2009–2022 (1974).
[CrossRef]

1967 (1)

G. F. Imbusch, “Energy transfer in ruby,” Phys. Rev. 153, 326–337 (1967).
[CrossRef]

Aamodt, L. C.

J. C. Murphy, L. C. Aamodt, C. K. Jen, “Energy transport in ruby via microwave-optical experiments,” Phys. Rev. B 9, 2009–2022 (1974).
[CrossRef]

Dils, R. R.

R. R. Dils, “High-temperature optical fiber thermometer,” J. Appl. Phys. 54, 1198–1200 (1983).
[CrossRef]

Ding, Z.

L. Tong, Y. Shen, R. Xu, Z. Ding, “Study on frequency response characteristics of high-temperature fiber optic sensor head,” in Fiber Optic Sensors V, K. Bennett, ed., Proc. SPIE2895, 431–434 (1996).
[CrossRef]

El-Sherif, M. A.

M. A. El-Sherif, I. L. Kamel, F. K. Ko, M. Shaker, “A novel sapphire fiber-optic sensor for testing advanced ceramics,” Ceram. Eng. Sci. Proc. 14, 437–444 (1993).
[CrossRef]

Grattan, K. T. V.

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggit, “Potential for temperature sensor applications of highly neodymium-doped crystals and fiber at up to approximately 1000 °C,” Rev. Sci. Instrum. 68, 2759–2763 (1997).
[CrossRef]

Z. Zhang, K. T. V. Grattan, A. W. Palmer, “Fiber optic temperature sensor based on the cross referencing between radiation and fluorescent lifetime,” Rev. Sci. Instrum. 63, 3177–3181 (1992).
[CrossRef]

K. T. V. Grattan, A. W. Palmer, Z. Zhang, “Development of a high-temperature fiber-optic thermometer probe using fluorescent decay,” Rev. Sci. Instrum. 62, 1210–1213 (1991).
[CrossRef]

Z. Zhang, K. T. V. Grattan, A. W. Palmer, “A novel signal processing scheme for a fluorescence based fiber-optic temperature sensor,” Rev. Sci. Instrum. 62, 1735–1742 (1991).
[CrossRef]

Imbusch, G. F.

G. F. Imbusch, “Energy transfer in ruby,” Phys. Rev. 153, 326–337 (1967).
[CrossRef]

Jen, C. K.

J. C. Murphy, L. C. Aamodt, C. K. Jen, “Energy transport in ruby via microwave-optical experiments,” Phys. Rev. B 9, 2009–2022 (1974).
[CrossRef]

Kamel, I. L.

M. A. El-Sherif, I. L. Kamel, F. K. Ko, M. Shaker, “A novel sapphire fiber-optic sensor for testing advanced ceramics,” Ceram. Eng. Sci. Proc. 14, 437–444 (1993).
[CrossRef]

Ko, F. K.

M. A. El-Sherif, I. L. Kamel, F. K. Ko, M. Shaker, “A novel sapphire fiber-optic sensor for testing advanced ceramics,” Ceram. Eng. Sci. Proc. 14, 437–444 (1993).
[CrossRef]

Meggit, B. T.

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggit, “Potential for temperature sensor applications of highly neodymium-doped crystals and fiber at up to approximately 1000 °C,” Rev. Sci. Instrum. 68, 2759–2763 (1997).
[CrossRef]

Murphy, J. C.

J. C. Murphy, L. C. Aamodt, C. K. Jen, “Energy transport in ruby via microwave-optical experiments,” Phys. Rev. B 9, 2009–2022 (1974).
[CrossRef]

Palmer, A. W.

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggit, “Potential for temperature sensor applications of highly neodymium-doped crystals and fiber at up to approximately 1000 °C,” Rev. Sci. Instrum. 68, 2759–2763 (1997).
[CrossRef]

Z. Zhang, K. T. V. Grattan, A. W. Palmer, “Fiber optic temperature sensor based on the cross referencing between radiation and fluorescent lifetime,” Rev. Sci. Instrum. 63, 3177–3181 (1992).
[CrossRef]

K. T. V. Grattan, A. W. Palmer, Z. Zhang, “Development of a high-temperature fiber-optic thermometer probe using fluorescent decay,” Rev. Sci. Instrum. 62, 1210–1213 (1991).
[CrossRef]

Z. Zhang, K. T. V. Grattan, A. W. Palmer, “A novel signal processing scheme for a fluorescence based fiber-optic temperature sensor,” Rev. Sci. Instrum. 62, 1735–1742 (1991).
[CrossRef]

Shaker, M.

M. A. El-Sherif, I. L. Kamel, F. K. Ko, M. Shaker, “A novel sapphire fiber-optic sensor for testing advanced ceramics,” Ceram. Eng. Sci. Proc. 14, 437–444 (1993).
[CrossRef]

Shen, Y.

Y. Shen, Y. Wang, L. Tong, L. Ye, “Novel sapphire fiber thermometer using fluorescent decay,” Sensors Actuators: A. Physical V71, 70–73 (1998).

Y. Shen, R. Xu, “Development of a compact sapphire fiber thermometer probe using fluorescent decay,” in Fiber Optic Sensors V, K. Bennett, ed., Proc. SPIE2895, 144–150 (1996).
[CrossRef]

L. Tong, Y. Shen, R. Xu, Z. Ding, “Study on frequency response characteristics of high-temperature fiber optic sensor head,” in Fiber Optic Sensors V, K. Bennett, ed., Proc. SPIE2895, 431–434 (1996).
[CrossRef]

Sholes, R. R.

R. R. Sholes, J. G. Small, “Fluorescent decay thermometer with biological applications,” Rev. Sci. Instrum. 51, 882–884 (1980).
[CrossRef]

Small, J. G.

R. R. Sholes, J. G. Small, “Fluorescent decay thermometer with biological applications,” Rev. Sci. Instrum. 51, 882–884 (1980).
[CrossRef]

Tong, L.

Y. Shen, Y. Wang, L. Tong, L. Ye, “Novel sapphire fiber thermometer using fluorescent decay,” Sensors Actuators: A. Physical V71, 70–73 (1998).

L. Tong, Y. Shen, R. Xu, Z. Ding, “Study on frequency response characteristics of high-temperature fiber optic sensor head,” in Fiber Optic Sensors V, K. Bennett, ed., Proc. SPIE2895, 431–434 (1996).
[CrossRef]

Wang, Y.

Y. Shen, Y. Wang, L. Tong, L. Ye, “Novel sapphire fiber thermometer using fluorescent decay,” Sensors Actuators: A. Physical V71, 70–73 (1998).

Xu, R.

Y. Shen, R. Xu, “Development of a compact sapphire fiber thermometer probe using fluorescent decay,” in Fiber Optic Sensors V, K. Bennett, ed., Proc. SPIE2895, 144–150 (1996).
[CrossRef]

L. Tong, Y. Shen, R. Xu, Z. Ding, “Study on frequency response characteristics of high-temperature fiber optic sensor head,” in Fiber Optic Sensors V, K. Bennett, ed., Proc. SPIE2895, 431–434 (1996).
[CrossRef]

Ye, L.

Y. Shen, Y. Wang, L. Tong, L. Ye, “Novel sapphire fiber thermometer using fluorescent decay,” Sensors Actuators: A. Physical V71, 70–73 (1998).

Zhang, Z.

Z. Zhang, K. T. V. Grattan, A. W. Palmer, “Fiber optic temperature sensor based on the cross referencing between radiation and fluorescent lifetime,” Rev. Sci. Instrum. 63, 3177–3181 (1992).
[CrossRef]

Z. Zhang, K. T. V. Grattan, A. W. Palmer, “A novel signal processing scheme for a fluorescence based fiber-optic temperature sensor,” Rev. Sci. Instrum. 62, 1735–1742 (1991).
[CrossRef]

K. T. V. Grattan, A. W. Palmer, Z. Zhang, “Development of a high-temperature fiber-optic thermometer probe using fluorescent decay,” Rev. Sci. Instrum. 62, 1210–1213 (1991).
[CrossRef]

Zhang, Z. Y.

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggit, “Potential for temperature sensor applications of highly neodymium-doped crystals and fiber at up to approximately 1000 °C,” Rev. Sci. Instrum. 68, 2759–2763 (1997).
[CrossRef]

Ceram. Eng. Sci. Proc. (1)

M. A. El-Sherif, I. L. Kamel, F. K. Ko, M. Shaker, “A novel sapphire fiber-optic sensor for testing advanced ceramics,” Ceram. Eng. Sci. Proc. 14, 437–444 (1993).
[CrossRef]

J. Appl. Phys. (1)

R. R. Dils, “High-temperature optical fiber thermometer,” J. Appl. Phys. 54, 1198–1200 (1983).
[CrossRef]

Phys. Rev. (1)

G. F. Imbusch, “Energy transfer in ruby,” Phys. Rev. 153, 326–337 (1967).
[CrossRef]

Phys. Rev. B (1)

J. C. Murphy, L. C. Aamodt, C. K. Jen, “Energy transport in ruby via microwave-optical experiments,” Phys. Rev. B 9, 2009–2022 (1974).
[CrossRef]

Rev. Sci. Instrum. (5)

R. R. Sholes, J. G. Small, “Fluorescent decay thermometer with biological applications,” Rev. Sci. Instrum. 51, 882–884 (1980).
[CrossRef]

K. T. V. Grattan, A. W. Palmer, Z. Zhang, “Development of a high-temperature fiber-optic thermometer probe using fluorescent decay,” Rev. Sci. Instrum. 62, 1210–1213 (1991).
[CrossRef]

Z. Zhang, K. T. V. Grattan, A. W. Palmer, “Fiber optic temperature sensor based on the cross referencing between radiation and fluorescent lifetime,” Rev. Sci. Instrum. 63, 3177–3181 (1992).
[CrossRef]

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggit, “Potential for temperature sensor applications of highly neodymium-doped crystals and fiber at up to approximately 1000 °C,” Rev. Sci. Instrum. 68, 2759–2763 (1997).
[CrossRef]

Z. Zhang, K. T. V. Grattan, A. W. Palmer, “A novel signal processing scheme for a fluorescence based fiber-optic temperature sensor,” Rev. Sci. Instrum. 62, 1735–1742 (1991).
[CrossRef]

Sensors Actuators: A. Physical (1)

Y. Shen, Y. Wang, L. Tong, L. Ye, “Novel sapphire fiber thermometer using fluorescent decay,” Sensors Actuators: A. Physical V71, 70–73 (1998).

Other (2)

Y. Shen, R. Xu, “Development of a compact sapphire fiber thermometer probe using fluorescent decay,” in Fiber Optic Sensors V, K. Bennett, ed., Proc. SPIE2895, 144–150 (1996).
[CrossRef]

L. Tong, Y. Shen, R. Xu, Z. Ding, “Study on frequency response characteristics of high-temperature fiber optic sensor head,” in Fiber Optic Sensors V, K. Bennett, ed., Proc. SPIE2895, 431–434 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Sapphire-fiber probe with Cr3+ ion doped in the fiber end.

Fig. 2
Fig. 2

Radiance spectrum of the fiber cavity.

Fig. 3
Fig. 3

Calibration graph of the fluorescent lifetime and blackbody radiation versus temperature.

Fig. 4
Fig. 4

System diagram of the fiber thermometer.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Iλ, t=C1/λ51/expC2/λT-1,
C1=2πhc2,  C2=hc/k,

Metrics