Abstract

We present an experimental study of the Raman spectrum of pure and synthetic seawater with respect to its salinity and temperature dependence. Experiments made in the laboratory with both cw and pulsed excitation yield information on the limits and applicability of the technique in actual experiments in the field. We have also performed an experimental analysis to determine the presence of stimulated Raman scattering and its influence on the temperature dependence of the spectrum.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Nelander, “Infrared spectrum of water-hydrogen sulfide complex,” J. Chem. Phys. 69, 3870–3871 (1978).
    [CrossRef]
  2. G. E. Walrafen, “Raman spectral studies of the effects of temperature on water structure,” J. Chem. Phys. 47, 114–126 (1967).
    [CrossRef]
  3. K. Heinzinger, “Molecular dynamics simulations of aqueous system,” in Computer Modeling of Fluids Polymers and Solids, C. R. A. Catlow, S. C. Parker, M. P. Allen, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1990), p. 357.
    [CrossRef]
  4. Y. J. Chang, E. W. J. Castner, “Femtosecond dynamics of hydrogen-bonding solvents. Formamide and N-methilformamide in acetonitrile, DMF, and water,” J. Chem. Phys. 99, 113–125 (1993).
    [CrossRef]
  5. K. Mizoguchi, Y. Hori, Y. Tominaga, “Study on dynamical structure in water and heavy water by low-frequency Raman spectroscopy,” J. Chem. Phys. 97, 1961–1968 (1992).
    [CrossRef]
  6. K. Cunningham, P. A. Lyons, “Depolarization ratio studies on liquid water,” J. Chem. Phys. 59, 2132–2139 (1973).
    [CrossRef]
  7. D. A. Leonard, B. Caputo, R. L. Johnson, F. E. Hoge, “Experimental remote sensing of subsurface temperature in natural ocean water,” Geophys. Res. Lett. 4, 279–281 (1977).
    [CrossRef]
  8. D. A. Leonard, B. Caputo, F. E. Hoge, “Remote sensing of subsurface water temperature by Raman scattering,” Appl. Opt. 18, 1732–1745 (1979).
    [CrossRef] [PubMed]
  9. G. Cecchi, V. Raimondi, “High-spectral-resolution lidar experiments for the monitoring of water column temperature,” in Remote Sensing of Vegetation and Sea, E. T. Engman, G. D’Ursa, G. Cecchi, P. Gudmansen, eds., Proc. SPIE2959, 208–215 (1997).
    [CrossRef]
  10. In the notation X1(X2, X3)X4, X1 denotes the laser axis, X2 the laser polarization, X3 the collecting polarization, and X4 the collecting direction.

1993

Y. J. Chang, E. W. J. Castner, “Femtosecond dynamics of hydrogen-bonding solvents. Formamide and N-methilformamide in acetonitrile, DMF, and water,” J. Chem. Phys. 99, 113–125 (1993).
[CrossRef]

1992

K. Mizoguchi, Y. Hori, Y. Tominaga, “Study on dynamical structure in water and heavy water by low-frequency Raman spectroscopy,” J. Chem. Phys. 97, 1961–1968 (1992).
[CrossRef]

1979

1978

B. Nelander, “Infrared spectrum of water-hydrogen sulfide complex,” J. Chem. Phys. 69, 3870–3871 (1978).
[CrossRef]

1977

D. A. Leonard, B. Caputo, R. L. Johnson, F. E. Hoge, “Experimental remote sensing of subsurface temperature in natural ocean water,” Geophys. Res. Lett. 4, 279–281 (1977).
[CrossRef]

1973

K. Cunningham, P. A. Lyons, “Depolarization ratio studies on liquid water,” J. Chem. Phys. 59, 2132–2139 (1973).
[CrossRef]

1967

G. E. Walrafen, “Raman spectral studies of the effects of temperature on water structure,” J. Chem. Phys. 47, 114–126 (1967).
[CrossRef]

Caputo, B.

D. A. Leonard, B. Caputo, F. E. Hoge, “Remote sensing of subsurface water temperature by Raman scattering,” Appl. Opt. 18, 1732–1745 (1979).
[CrossRef] [PubMed]

D. A. Leonard, B. Caputo, R. L. Johnson, F. E. Hoge, “Experimental remote sensing of subsurface temperature in natural ocean water,” Geophys. Res. Lett. 4, 279–281 (1977).
[CrossRef]

Castner, E. W. J.

Y. J. Chang, E. W. J. Castner, “Femtosecond dynamics of hydrogen-bonding solvents. Formamide and N-methilformamide in acetonitrile, DMF, and water,” J. Chem. Phys. 99, 113–125 (1993).
[CrossRef]

Cecchi, G.

G. Cecchi, V. Raimondi, “High-spectral-resolution lidar experiments for the monitoring of water column temperature,” in Remote Sensing of Vegetation and Sea, E. T. Engman, G. D’Ursa, G. Cecchi, P. Gudmansen, eds., Proc. SPIE2959, 208–215 (1997).
[CrossRef]

Chang, Y. J.

Y. J. Chang, E. W. J. Castner, “Femtosecond dynamics of hydrogen-bonding solvents. Formamide and N-methilformamide in acetonitrile, DMF, and water,” J. Chem. Phys. 99, 113–125 (1993).
[CrossRef]

Cunningham, K.

K. Cunningham, P. A. Lyons, “Depolarization ratio studies on liquid water,” J. Chem. Phys. 59, 2132–2139 (1973).
[CrossRef]

Heinzinger, K.

K. Heinzinger, “Molecular dynamics simulations of aqueous system,” in Computer Modeling of Fluids Polymers and Solids, C. R. A. Catlow, S. C. Parker, M. P. Allen, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1990), p. 357.
[CrossRef]

Hoge, F. E.

D. A. Leonard, B. Caputo, F. E. Hoge, “Remote sensing of subsurface water temperature by Raman scattering,” Appl. Opt. 18, 1732–1745 (1979).
[CrossRef] [PubMed]

D. A. Leonard, B. Caputo, R. L. Johnson, F. E. Hoge, “Experimental remote sensing of subsurface temperature in natural ocean water,” Geophys. Res. Lett. 4, 279–281 (1977).
[CrossRef]

Hori, Y.

K. Mizoguchi, Y. Hori, Y. Tominaga, “Study on dynamical structure in water and heavy water by low-frequency Raman spectroscopy,” J. Chem. Phys. 97, 1961–1968 (1992).
[CrossRef]

Johnson, R. L.

D. A. Leonard, B. Caputo, R. L. Johnson, F. E. Hoge, “Experimental remote sensing of subsurface temperature in natural ocean water,” Geophys. Res. Lett. 4, 279–281 (1977).
[CrossRef]

Leonard, D. A.

D. A. Leonard, B. Caputo, F. E. Hoge, “Remote sensing of subsurface water temperature by Raman scattering,” Appl. Opt. 18, 1732–1745 (1979).
[CrossRef] [PubMed]

D. A. Leonard, B. Caputo, R. L. Johnson, F. E. Hoge, “Experimental remote sensing of subsurface temperature in natural ocean water,” Geophys. Res. Lett. 4, 279–281 (1977).
[CrossRef]

Lyons, P. A.

K. Cunningham, P. A. Lyons, “Depolarization ratio studies on liquid water,” J. Chem. Phys. 59, 2132–2139 (1973).
[CrossRef]

Mizoguchi, K.

K. Mizoguchi, Y. Hori, Y. Tominaga, “Study on dynamical structure in water and heavy water by low-frequency Raman spectroscopy,” J. Chem. Phys. 97, 1961–1968 (1992).
[CrossRef]

Nelander, B.

B. Nelander, “Infrared spectrum of water-hydrogen sulfide complex,” J. Chem. Phys. 69, 3870–3871 (1978).
[CrossRef]

Raimondi, V.

G. Cecchi, V. Raimondi, “High-spectral-resolution lidar experiments for the monitoring of water column temperature,” in Remote Sensing of Vegetation and Sea, E. T. Engman, G. D’Ursa, G. Cecchi, P. Gudmansen, eds., Proc. SPIE2959, 208–215 (1997).
[CrossRef]

Tominaga, Y.

K. Mizoguchi, Y. Hori, Y. Tominaga, “Study on dynamical structure in water and heavy water by low-frequency Raman spectroscopy,” J. Chem. Phys. 97, 1961–1968 (1992).
[CrossRef]

Walrafen, G. E.

G. E. Walrafen, “Raman spectral studies of the effects of temperature on water structure,” J. Chem. Phys. 47, 114–126 (1967).
[CrossRef]

Appl. Opt.

Geophys. Res. Lett.

D. A. Leonard, B. Caputo, R. L. Johnson, F. E. Hoge, “Experimental remote sensing of subsurface temperature in natural ocean water,” Geophys. Res. Lett. 4, 279–281 (1977).
[CrossRef]

J. Chem. Phys.

B. Nelander, “Infrared spectrum of water-hydrogen sulfide complex,” J. Chem. Phys. 69, 3870–3871 (1978).
[CrossRef]

G. E. Walrafen, “Raman spectral studies of the effects of temperature on water structure,” J. Chem. Phys. 47, 114–126 (1967).
[CrossRef]

Y. J. Chang, E. W. J. Castner, “Femtosecond dynamics of hydrogen-bonding solvents. Formamide and N-methilformamide in acetonitrile, DMF, and water,” J. Chem. Phys. 99, 113–125 (1993).
[CrossRef]

K. Mizoguchi, Y. Hori, Y. Tominaga, “Study on dynamical structure in water and heavy water by low-frequency Raman spectroscopy,” J. Chem. Phys. 97, 1961–1968 (1992).
[CrossRef]

K. Cunningham, P. A. Lyons, “Depolarization ratio studies on liquid water,” J. Chem. Phys. 59, 2132–2139 (1973).
[CrossRef]

Other

K. Heinzinger, “Molecular dynamics simulations of aqueous system,” in Computer Modeling of Fluids Polymers and Solids, C. R. A. Catlow, S. C. Parker, M. P. Allen, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1990), p. 357.
[CrossRef]

G. Cecchi, V. Raimondi, “High-spectral-resolution lidar experiments for the monitoring of water column temperature,” in Remote Sensing of Vegetation and Sea, E. T. Engman, G. D’Ursa, G. Cecchi, P. Gudmansen, eds., Proc. SPIE2959, 208–215 (1997).
[CrossRef]

In the notation X1(X2, X3)X4, X1 denotes the laser axis, X2 the laser polarization, X3 the collecting polarization, and X4 the collecting direction.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Typical Raman spectrum obtained with cw excitation superimposed upon fits based on a two-Gaussian model. The two Gaussians are also shown.

Fig. 2
Fig. 2

Ratio R obtained from the measured spectra with cw excitation, as defined in the text [Eq. (2)], versus temperature. Solid curves, fits with Eq. (3) and parameters (4). Each curve corresponds to a different value of the salinity s: from top to bottom, s = 38, 26, 13, 0 g/L.

Fig. 3
Fig. 3

Spectrum area versus pulse energy: triangles, detection with an aligned photodiode array (on axis with respect to the laser beam); circles, detection with a misaligned photodiode array (off axis to the laser beam). Corresponding curves, quadratic fits to the pulse energy. The data are normalized to have the same linear dependence on the pulse energy (dotted curve). Assuming that both the temporal and the spatial beam profiles are rectangular, the intensity that corresponds to 10 mJ is 18 MW/cm2.

Fig. 4
Fig. 4

Ratio R obtained from the measured spectra with pulsed excitation versus temperature (s = 0). Solid curve, linear fit of the data.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Na+, 28.4%; K+, 2.2%; Ca2+, 1.2%;  Mg2+, 4.1%; Cl-, 47.4%; SO42-, 16.7%.
R=H1/W1/H2/W2,
R=A+BT-T0+Cs-s0+DT-T02+ET-T0s-s0+Fs-s02,
A=1.451±0.004,  B=1.08±0.03 10-2 °C-1,  C=5.6±0.2 10-3 1/G.
R=A+BT-T0,
Aaligned=1.506±0.004,  Baligned=8.7±1.3 10-3 °C-1;  Anot aligned=1.518±0.009,  Bnot aligned=13±3 10-3 °C-1.

Metrics