Abstract

The infrared radiation of a pulsed Nd:YAG laser is employed to generate, either by electrostriction or by thermalization of absorbed laser energy, a spatially periodic density grating that oscillates in time. The second-harmonic output of the same laser is injected into a high-reflectance optical cavity, and the pulse trapped in the cavity is used to monitor the temporal evolution of the grating diffraction efficiency. The oscillation period of the diffraction efficiency depends on the sound velocity in the medium. If the gas composition is known, measurement of the sound velocity allows the temperature to be deduced. On the other hand, if the temperature is known, concentrations in isothermal binary mixtures can be determined. We demonstrate the applicability of this novel one-laser grating arrangement by concentration measurements in a cell containing methane–nitrogen mixtures and by preliminary temperature measurements in a premixed methane–air flame.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Eichler, P. Günter, D. W. Pohl, Laser-Induced Dynamic Gratings, Vol. 50 of Springer Series in Optical Science (Springer-Verlag, Berlin, 1986).
  2. R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, P. F. Liao, “Phase conjugation and high-resolution spectroscopy by resonant degenerate four-wave mixing,” in Optical Phase Conjugation, R. A. Fischer, ed. (Academic, New York, 1983), pp. 211–284.
    [CrossRef]
  3. A. Dreizler, T. Dreier, J. Wolfrum, “Thermal grating effects in infrared degenerate four-wave mixing for trace gas detection,” Chem. Phys. Lett. 233, 525–532 (1995).
    [CrossRef]
  4. P. H. Paul, R. L. Farrow, P. M. Danehy, “Gas-phase thermal-grating contributions to four-wave mixing,” J. Opt. Soc. Am. B 12, 384–392 (1995).
    [CrossRef]
  5. P. M. Danehy, P. H. Paul, R. L. Farrow, “Thermal-grating contributions to degenerate four-wave mixing in nitric oxide,” J. Opt. Soc. Am. B 12, 1564–1576 (1995).
    [CrossRef]
  6. S. Williams, L. A. Rahn, P. H. Paul, J. W. Forsman, R. N. Zare, “Laser-induced thermal-grating effects in flames,” Opt. Lett. 19, 1681–1683 (1994).
    [CrossRef] [PubMed]
  7. Y. Kimura, D. Kanda, M. Terazima, N. Hirota, “Application of the transient grating method to the measurement of transport properties for high pressure fluids,” Ber. Bunsenges. Phys. Chem. 99, 196–203 (1995).
    [CrossRef]
  8. H. Latzel, T. Dreier, M. Giorgi, R. Fantoni, “Time-resolved laser-induced thermal-grating experiments induced by short pulse CO2-laser radiation,” Ber. Bunsenges. Phys. Chem. 101, 1065–1070 (1997).
    [CrossRef]
  9. K. A. Nelson, D. R. Lutz, M. D. Fayer, L. Madison, “Laser-induced phonon spectroscopy. Optical generation of ultrasonic waves and investigation of electronic excited-state interactions in solids,” Phys. Rev. B 24, 3261–3275 (1981).
    [CrossRef]
  10. B. Hemmerling, A. Stampanoni-Panariello, “Imaging of flames and cold flows in air by diffraction from a laser-induced grating,” Appl. Phys. B 57, 281–285 (1993).
    [CrossRef]
  11. E. P. Cummings, “Laser-induced thermal acoustics: simple accurate gas measurements,” Opt. Lett. 19, 1361–1363 (1994).
    [CrossRef] [PubMed]
  12. A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Electrostrictive generation of nonresonant gratings in the gas phase by multimode lasers,” Phys. Rev. A 51, 655–662 (1995).
    [CrossRef] [PubMed]
  13. A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Temperature measurements in gases using laser-induced electrostrictive gratings,” Appl. Phys. B 67, 125–130 (1998).
    [CrossRef]
  14. R. W. Boyd, Nonlinear Optics (Academic, New York, 1992).
  15. W. Hubschmid, B. Hemmerling, A. Stampanoni-Panariello, “Rayleigh and Brillouin modes in electrostrictive gratings,” J. Opt. Soc. Am. B 12, 1850–1854 (1995).
    [CrossRef]
  16. J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997).
    [CrossRef] [PubMed]
  17. L. Herzberg, G. Herzberg, “Fine structure of the infrared atmospheric oxygen bands,” Astrophys. J. 105, 353–359 (1947).
    [CrossRef]
  18. J. H. Keenan, J. Chao, J. Kaye, Gas Tables, 2nd ed. (Wiley, New York, 1980).
  19. H. O. Kneser, “Relaxation processes in gases,” in Properties of Gases, Liquids and Solutions Vol. II, Part A of Physical Acoustics: Principles and Methods, W. P. Mason, ed. (Academic, New York, 1965), Chap. 3, p. 155.
  20. L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvitch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, J. Schroeder, A. McCann, “HITEMP database,” J. Quant. Spectrosc. Radiat. Transf. (to be published).

1998

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Temperature measurements in gases using laser-induced electrostrictive gratings,” Appl. Phys. B 67, 125–130 (1998).
[CrossRef]

1997

J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997).
[CrossRef] [PubMed]

H. Latzel, T. Dreier, M. Giorgi, R. Fantoni, “Time-resolved laser-induced thermal-grating experiments induced by short pulse CO2-laser radiation,” Ber. Bunsenges. Phys. Chem. 101, 1065–1070 (1997).
[CrossRef]

1995

Y. Kimura, D. Kanda, M. Terazima, N. Hirota, “Application of the transient grating method to the measurement of transport properties for high pressure fluids,” Ber. Bunsenges. Phys. Chem. 99, 196–203 (1995).
[CrossRef]

A. Dreizler, T. Dreier, J. Wolfrum, “Thermal grating effects in infrared degenerate four-wave mixing for trace gas detection,” Chem. Phys. Lett. 233, 525–532 (1995).
[CrossRef]

P. H. Paul, R. L. Farrow, P. M. Danehy, “Gas-phase thermal-grating contributions to four-wave mixing,” J. Opt. Soc. Am. B 12, 384–392 (1995).
[CrossRef]

P. M. Danehy, P. H. Paul, R. L. Farrow, “Thermal-grating contributions to degenerate four-wave mixing in nitric oxide,” J. Opt. Soc. Am. B 12, 1564–1576 (1995).
[CrossRef]

W. Hubschmid, B. Hemmerling, A. Stampanoni-Panariello, “Rayleigh and Brillouin modes in electrostrictive gratings,” J. Opt. Soc. Am. B 12, 1850–1854 (1995).
[CrossRef]

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Electrostrictive generation of nonresonant gratings in the gas phase by multimode lasers,” Phys. Rev. A 51, 655–662 (1995).
[CrossRef] [PubMed]

1994

1993

B. Hemmerling, A. Stampanoni-Panariello, “Imaging of flames and cold flows in air by diffraction from a laser-induced grating,” Appl. Phys. B 57, 281–285 (1993).
[CrossRef]

1981

K. A. Nelson, D. R. Lutz, M. D. Fayer, L. Madison, “Laser-induced phonon spectroscopy. Optical generation of ultrasonic waves and investigation of electronic excited-state interactions in solids,” Phys. Rev. B 24, 3261–3275 (1981).
[CrossRef]

1947

L. Herzberg, G. Herzberg, “Fine structure of the infrared atmospheric oxygen bands,” Astrophys. J. 105, 353–359 (1947).
[CrossRef]

Abrams, R. L.

R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, P. F. Liao, “Phase conjugation and high-resolution spectroscopy by resonant degenerate four-wave mixing,” in Optical Phase Conjugation, R. A. Fischer, ed. (Academic, New York, 1983), pp. 211–284.
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, New York, 1992).

Camy-Peyret, C.

L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvitch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, J. Schroeder, A. McCann, “HITEMP database,” J. Quant. Spectrosc. Radiat. Transf. (to be published).

Chao, J.

J. H. Keenan, J. Chao, J. Kaye, Gas Tables, 2nd ed. (Wiley, New York, 1980).

Cummings, E. P.

Danehy, P. M.

Dreier, T.

H. Latzel, T. Dreier, M. Giorgi, R. Fantoni, “Time-resolved laser-induced thermal-grating experiments induced by short pulse CO2-laser radiation,” Ber. Bunsenges. Phys. Chem. 101, 1065–1070 (1997).
[CrossRef]

A. Dreizler, T. Dreier, J. Wolfrum, “Thermal grating effects in infrared degenerate four-wave mixing for trace gas detection,” Chem. Phys. Lett. 233, 525–532 (1995).
[CrossRef]

Dreizler, A.

A. Dreizler, T. Dreier, J. Wolfrum, “Thermal grating effects in infrared degenerate four-wave mixing for trace gas detection,” Chem. Phys. Lett. 233, 525–532 (1995).
[CrossRef]

Eichler, H. J.

H. J. Eichler, P. Günter, D. W. Pohl, Laser-Induced Dynamic Gratings, Vol. 50 of Springer Series in Optical Science (Springer-Verlag, Berlin, 1986).

Fantoni, R.

H. Latzel, T. Dreier, M. Giorgi, R. Fantoni, “Time-resolved laser-induced thermal-grating experiments induced by short pulse CO2-laser radiation,” Ber. Bunsenges. Phys. Chem. 101, 1065–1070 (1997).
[CrossRef]

Farrow, R. L.

Fayer, M. D.

K. A. Nelson, D. R. Lutz, M. D. Fayer, L. Madison, “Laser-induced phonon spectroscopy. Optical generation of ultrasonic waves and investigation of electronic excited-state interactions in solids,” Phys. Rev. B 24, 3261–3275 (1981).
[CrossRef]

Flaud, J.-M.

L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvitch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, J. Schroeder, A. McCann, “HITEMP database,” J. Quant. Spectrosc. Radiat. Transf. (to be published).

Forsman, J. W.

Gamache, R. R.

L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvitch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, J. Schroeder, A. McCann, “HITEMP database,” J. Quant. Spectrosc. Radiat. Transf. (to be published).

Giorgi, M.

H. Latzel, T. Dreier, M. Giorgi, R. Fantoni, “Time-resolved laser-induced thermal-grating experiments induced by short pulse CO2-laser radiation,” Ber. Bunsenges. Phys. Chem. 101, 1065–1070 (1997).
[CrossRef]

Goorvitch, D.

L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvitch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, J. Schroeder, A. McCann, “HITEMP database,” J. Quant. Spectrosc. Radiat. Transf. (to be published).

Günter, P.

H. J. Eichler, P. Günter, D. W. Pohl, Laser-Induced Dynamic Gratings, Vol. 50 of Springer Series in Optical Science (Springer-Verlag, Berlin, 1986).

Hawkins, R. L.

L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvitch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, J. Schroeder, A. McCann, “HITEMP database,” J. Quant. Spectrosc. Radiat. Transf. (to be published).

Hemmerling, B.

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Temperature measurements in gases using laser-induced electrostrictive gratings,” Appl. Phys. B 67, 125–130 (1998).
[CrossRef]

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Electrostrictive generation of nonresonant gratings in the gas phase by multimode lasers,” Phys. Rev. A 51, 655–662 (1995).
[CrossRef] [PubMed]

W. Hubschmid, B. Hemmerling, A. Stampanoni-Panariello, “Rayleigh and Brillouin modes in electrostrictive gratings,” J. Opt. Soc. Am. B 12, 1850–1854 (1995).
[CrossRef]

B. Hemmerling, A. Stampanoni-Panariello, “Imaging of flames and cold flows in air by diffraction from a laser-induced grating,” Appl. Phys. B 57, 281–285 (1993).
[CrossRef]

Herzberg, G.

L. Herzberg, G. Herzberg, “Fine structure of the infrared atmospheric oxygen bands,” Astrophys. J. 105, 353–359 (1947).
[CrossRef]

Herzberg, L.

L. Herzberg, G. Herzberg, “Fine structure of the infrared atmospheric oxygen bands,” Astrophys. J. 105, 353–359 (1947).
[CrossRef]

Hirota, N.

Y. Kimura, D. Kanda, M. Terazima, N. Hirota, “Application of the transient grating method to the measurement of transport properties for high pressure fluids,” Ber. Bunsenges. Phys. Chem. 99, 196–203 (1995).
[CrossRef]

Hubschmid, W.

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Temperature measurements in gases using laser-induced electrostrictive gratings,” Appl. Phys. B 67, 125–130 (1998).
[CrossRef]

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Electrostrictive generation of nonresonant gratings in the gas phase by multimode lasers,” Phys. Rev. A 51, 655–662 (1995).
[CrossRef] [PubMed]

W. Hubschmid, B. Hemmerling, A. Stampanoni-Panariello, “Rayleigh and Brillouin modes in electrostrictive gratings,” J. Opt. Soc. Am. B 12, 1850–1854 (1995).
[CrossRef]

Kanda, D.

Y. Kimura, D. Kanda, M. Terazima, N. Hirota, “Application of the transient grating method to the measurement of transport properties for high pressure fluids,” Ber. Bunsenges. Phys. Chem. 99, 196–203 (1995).
[CrossRef]

Kaye, J.

J. H. Keenan, J. Chao, J. Kaye, Gas Tables, 2nd ed. (Wiley, New York, 1980).

Keenan, J. H.

J. H. Keenan, J. Chao, J. Kaye, Gas Tables, 2nd ed. (Wiley, New York, 1980).

Kimura, Y.

Y. Kimura, D. Kanda, M. Terazima, N. Hirota, “Application of the transient grating method to the measurement of transport properties for high pressure fluids,” Ber. Bunsenges. Phys. Chem. 99, 196–203 (1995).
[CrossRef]

Kneser, H. O.

H. O. Kneser, “Relaxation processes in gases,” in Properties of Gases, Liquids and Solutions Vol. II, Part A of Physical Acoustics: Principles and Methods, W. P. Mason, ed. (Academic, New York, 1965), Chap. 3, p. 155.

Lam, J. F.

R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, P. F. Liao, “Phase conjugation and high-resolution spectroscopy by resonant degenerate four-wave mixing,” in Optical Phase Conjugation, R. A. Fischer, ed. (Academic, New York, 1983), pp. 211–284.
[CrossRef]

Latzel, H.

H. Latzel, T. Dreier, M. Giorgi, R. Fantoni, “Time-resolved laser-induced thermal-grating experiments induced by short pulse CO2-laser radiation,” Ber. Bunsenges. Phys. Chem. 101, 1065–1070 (1997).
[CrossRef]

Liao, P. F.

R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, P. F. Liao, “Phase conjugation and high-resolution spectroscopy by resonant degenerate four-wave mixing,” in Optical Phase Conjugation, R. A. Fischer, ed. (Academic, New York, 1983), pp. 211–284.
[CrossRef]

Lind, R. C.

R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, P. F. Liao, “Phase conjugation and high-resolution spectroscopy by resonant degenerate four-wave mixing,” in Optical Phase Conjugation, R. A. Fischer, ed. (Academic, New York, 1983), pp. 211–284.
[CrossRef]

Lutz, D. R.

K. A. Nelson, D. R. Lutz, M. D. Fayer, L. Madison, “Laser-induced phonon spectroscopy. Optical generation of ultrasonic waves and investigation of electronic excited-state interactions in solids,” Phys. Rev. B 24, 3261–3275 (1981).
[CrossRef]

Madison, L.

K. A. Nelson, D. R. Lutz, M. D. Fayer, L. Madison, “Laser-induced phonon spectroscopy. Optical generation of ultrasonic waves and investigation of electronic excited-state interactions in solids,” Phys. Rev. B 24, 3261–3275 (1981).
[CrossRef]

McCann, A.

L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvitch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, J. Schroeder, A. McCann, “HITEMP database,” J. Quant. Spectrosc. Radiat. Transf. (to be published).

Nelson, K. A.

K. A. Nelson, D. R. Lutz, M. D. Fayer, L. Madison, “Laser-induced phonon spectroscopy. Optical generation of ultrasonic waves and investigation of electronic excited-state interactions in solids,” Phys. Rev. B 24, 3261–3275 (1981).
[CrossRef]

O’Keefe, A.

J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997).
[CrossRef] [PubMed]

Paul, J. B.

J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997).
[CrossRef] [PubMed]

Paul, P. H.

Pohl, D. W.

H. J. Eichler, P. Günter, D. W. Pohl, Laser-Induced Dynamic Gratings, Vol. 50 of Springer Series in Optical Science (Springer-Verlag, Berlin, 1986).

Rahn, L. A.

Rothman, L. S.

L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvitch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, J. Schroeder, A. McCann, “HITEMP database,” J. Quant. Spectrosc. Radiat. Transf. (to be published).

Saykally, R. J.

J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997).
[CrossRef] [PubMed]

Scherer, J. J.

J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997).
[CrossRef] [PubMed]

Schroeder, J.

L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvitch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, J. Schroeder, A. McCann, “HITEMP database,” J. Quant. Spectrosc. Radiat. Transf. (to be published).

Selby, J. E. A.

L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvitch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, J. Schroeder, A. McCann, “HITEMP database,” J. Quant. Spectrosc. Radiat. Transf. (to be published).

Stampanoni-Panariello, A.

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Temperature measurements in gases using laser-induced electrostrictive gratings,” Appl. Phys. B 67, 125–130 (1998).
[CrossRef]

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Electrostrictive generation of nonresonant gratings in the gas phase by multimode lasers,” Phys. Rev. A 51, 655–662 (1995).
[CrossRef] [PubMed]

W. Hubschmid, B. Hemmerling, A. Stampanoni-Panariello, “Rayleigh and Brillouin modes in electrostrictive gratings,” J. Opt. Soc. Am. B 12, 1850–1854 (1995).
[CrossRef]

B. Hemmerling, A. Stampanoni-Panariello, “Imaging of flames and cold flows in air by diffraction from a laser-induced grating,” Appl. Phys. B 57, 281–285 (1993).
[CrossRef]

Steel, D. G.

R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, P. F. Liao, “Phase conjugation and high-resolution spectroscopy by resonant degenerate four-wave mixing,” in Optical Phase Conjugation, R. A. Fischer, ed. (Academic, New York, 1983), pp. 211–284.
[CrossRef]

Terazima, M.

Y. Kimura, D. Kanda, M. Terazima, N. Hirota, “Application of the transient grating method to the measurement of transport properties for high pressure fluids,” Ber. Bunsenges. Phys. Chem. 99, 196–203 (1995).
[CrossRef]

Wattson, R. B.

L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvitch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, J. Schroeder, A. McCann, “HITEMP database,” J. Quant. Spectrosc. Radiat. Transf. (to be published).

Williams, S.

Wolfrum, J.

A. Dreizler, T. Dreier, J. Wolfrum, “Thermal grating effects in infrared degenerate four-wave mixing for trace gas detection,” Chem. Phys. Lett. 233, 525–532 (1995).
[CrossRef]

Zare, R. N.

Appl. Phys. B

B. Hemmerling, A. Stampanoni-Panariello, “Imaging of flames and cold flows in air by diffraction from a laser-induced grating,” Appl. Phys. B 57, 281–285 (1993).
[CrossRef]

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Temperature measurements in gases using laser-induced electrostrictive gratings,” Appl. Phys. B 67, 125–130 (1998).
[CrossRef]

Astrophys. J.

L. Herzberg, G. Herzberg, “Fine structure of the infrared atmospheric oxygen bands,” Astrophys. J. 105, 353–359 (1947).
[CrossRef]

Ber. Bunsenges. Phys. Chem.

Y. Kimura, D. Kanda, M. Terazima, N. Hirota, “Application of the transient grating method to the measurement of transport properties for high pressure fluids,” Ber. Bunsenges. Phys. Chem. 99, 196–203 (1995).
[CrossRef]

H. Latzel, T. Dreier, M. Giorgi, R. Fantoni, “Time-resolved laser-induced thermal-grating experiments induced by short pulse CO2-laser radiation,” Ber. Bunsenges. Phys. Chem. 101, 1065–1070 (1997).
[CrossRef]

Chem. Phys. Lett.

A. Dreizler, T. Dreier, J. Wolfrum, “Thermal grating effects in infrared degenerate four-wave mixing for trace gas detection,” Chem. Phys. Lett. 233, 525–532 (1995).
[CrossRef]

Chem. Rev.

J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

Opt. Lett.

Phys. Rev. A

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Electrostrictive generation of nonresonant gratings in the gas phase by multimode lasers,” Phys. Rev. A 51, 655–662 (1995).
[CrossRef] [PubMed]

Phys. Rev. B

K. A. Nelson, D. R. Lutz, M. D. Fayer, L. Madison, “Laser-induced phonon spectroscopy. Optical generation of ultrasonic waves and investigation of electronic excited-state interactions in solids,” Phys. Rev. B 24, 3261–3275 (1981).
[CrossRef]

Other

H. J. Eichler, P. Günter, D. W. Pohl, Laser-Induced Dynamic Gratings, Vol. 50 of Springer Series in Optical Science (Springer-Verlag, Berlin, 1986).

R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, P. F. Liao, “Phase conjugation and high-resolution spectroscopy by resonant degenerate four-wave mixing,” in Optical Phase Conjugation, R. A. Fischer, ed. (Academic, New York, 1983), pp. 211–284.
[CrossRef]

R. W. Boyd, Nonlinear Optics (Academic, New York, 1992).

J. H. Keenan, J. Chao, J. Kaye, Gas Tables, 2nd ed. (Wiley, New York, 1980).

H. O. Kneser, “Relaxation processes in gases,” in Properties of Gases, Liquids and Solutions Vol. II, Part A of Physical Acoustics: Principles and Methods, W. P. Mason, ed. (Academic, New York, 1965), Chap. 3, p. 155.

L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvitch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, J. Schroeder, A. McCann, “HITEMP database,” J. Quant. Spectrosc. Radiat. Transf. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup. Abbreviations are defined in text.

Fig. 2
Fig. 2

Three-dimensional backward phase-matching geometry: EB1, EB2, grating excitation beams (λ E = 1064 nm); RB, probe beam (λP = 532 nm).

Fig. 3
Fig. 3

(a) Temporal evolution of the signal intensity in ambient air at a temperature of 297 K. (b) Initial part of the signal with higher temporal resolution. The displayed signal is averaged over 100 shots.

Fig. 4
Fig. 4

Oscillation period of the grating diffraction efficiency measured at 0.1-MPa total pressure at room temperature in methane–nitrogen mixtures. The dotted curve is calculated from Eqs. (5) and (6), and the solid curve was obtained by fitting of the measured oscillation periods by a polynomial.

Fig. 5
Fig. 5

Single-shot measurements of the oscillation period of the grating diffraction efficiency in a mixture of 0.55-mol fraction methane in nitrogen. The measured periods are compiled in a normalized histogram with a bin width of 0.1 ns.

Fig. 6
Fig. 6

Measurement in a lean methane–air flame (ϕ = 0.84) approximately 5 mm above the burner surface. The signal is averaged over 100 shots. From the measured oscillation period of the signal a temperature of 2340 ± 350 K is determined.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

η=IDIP=πΔndλP2+ΔKd42,
TG=Λmv1-Λ/v2πτD2-1/2,
Λ=λE2 sinθ/2;
τD=ρ0Λ2π2μ+γ-1κcP-1.
v=Λ/mTG.
v=γ/MRT,
M=is xiMi,
γ=is xiMicPiis xiMicvi,
It=I0 exp-t/τ,
τ=τR2Ra1-Ra.
Isigt=A1-cos2π/TGexp-t/τ1+t2/τ2.

Metrics