Abstract

We propose, demonstrate, and analyze the application of phase-conjugate mirrors during the recording of volume holographic memories. Our results show that using phase-conjugate mirrors during recording improves the uniformity of the holographic gratings and increases the recording speed. Theoretical simulations agree with experimental results.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, G. W. Burr, “Holographic data storage,” Computer 31, 52–60 (1998).
    [CrossRef]
  2. D. Psaltis, G. W. Burr, X. An, M. Levene, G. Barbastathis, A. Pu, “Holographic memories,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications III, F. T. Yu, S. Yin, eds., Proc. SPIE3137, 96–100 (1997).
  3. M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, “Holographic-data-storage materials,” MRS Bull. 21, 51–60 (1996).
  4. G. W. Burr, F. H. Mok, D. Psaltis, “Storage of 10000 holograms in LiNbO3:Fe,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 9.
  5. H. Coufal, “Holographic data storage or reliability; a status report,” in 1997 Optical Digest of 1997 Optical Data Storage Topical Meeting ODS (Soc. Photo. Opt. Instrum. Eng., Bellingham, Wash.1997), pp. 46–47.
  6. M.-P. Bernal, H. Coufal, R. K. Grygler, J. A. Hoffnagle, “A precision tester for studies of holographic optical storage materials and recording physics,” Appl. Opt. 35, 2360–2374 (1996).
    [CrossRef] [PubMed]
  7. J. H. Hong, D. Psaltis, “Dense holographic storage promises fast access,” Laser Focus World 32(4), 119–122 (1996).
  8. K. Curtis, A. Pu, D. Psaltis, “Method for holographic storage using peristrophic multiplexing,” Opt. Lett. 19, 993–994 (1994).
    [CrossRef] [PubMed]
  9. D. Lande, J. F. Heanue, M. C. Bashaw, L. Hesselink, “Digital wavelength-multiplexed holographic data storage system,” Opt. Lett. 21, 1780–1782 (1996).
    [CrossRef] [PubMed]
  10. J. F. Heanue, M. C. Bashaw, L. Hesselink, “Channel codes for digital holographic data storage,” J. Opt. Soc. Am. A 12, 2432–2439 (1995).
    [CrossRef]
  11. J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital information,” Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 27.
  12. S. Campbell, S.-H. Lin, X. Yi, P. Yeh, “Photorefractive volume holographic memory systems: approaches, limitations, and requirements,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications, F. T. Yu, ed., Proc. SPIE2529, 134–144 (1995).
    [CrossRef]
  13. F. H. Mok, M. C. Tackitt, H. M. Stoll, “Storage of 500 high-resolution holograms in a LiNbO3,” Opt. Lett. 16, 605–607 (1991).
    [CrossRef] [PubMed]
  14. G. A. Rakuljic, V. Leyva, A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992).
    [CrossRef]
  15. J. Lembcke, C. Denz, T. Tschudi, “General formalism for angular and phase-encoding multiplexing in holographic image storage,” Opt. Mater. 4, 428–432 (1995).
    [CrossRef]
  16. C. Alves, G. Pauliat, G. Roosen, “Dynamic phase-encoding storage of 64 images in a BaTiO3 photorefractive crystal,” Opt. Lett. 19, 1894–1896 (1994).
    [CrossRef]
  17. A. Yariv, “Transmission and recovery of three-dimensional images in optical waveguides,” J. Opt. Soc. Am. 66, 301–312 (1976).
    [CrossRef]
  18. R. A. Fisher, ed., Optical Phase Conjugation (Academic, New York, 1985).
  19. J. O. White, A. Yariv, “Real-time image processing via four-wave mixing in a photorefractive medium,” Appl. Phys. Lett. 37, 5–7 (1980).
    [CrossRef]
  20. P. Yeh, C. Gu, C. Cheng, K. Y. Hsu, “Hologram enhancement in photorefractive media,” Opt. Eng. 34, 2204–2212 (1995).
    [CrossRef]
  21. F. Zhao, K. Sayano, “Compact read-only memory with lensless phase-conjugate holograms,” Opt. Lett. 21, 1295–1297 (1996).
    [CrossRef] [PubMed]
  22. F. Zhao, K. Sayano, “Compact high-resolution holographic storage,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), paper CWF11, p. 264.
  23. Y. Qiao, D. Psaltis, C. Gu, J. Hong, P. Yeh, R. R. Neurgaonkar, “Phase-locked sustainment of photorefractive holograms using phase conjugation,” J. Appl. Phys. 70, 4646–4648 (1991).
    [CrossRef]
  24. T. Dellwig, C. Denz, T. Rauch, T. Tschudi, “Coherent refreshment and updating for dynamic photorefractive optical memories using phase conjugation,” Opt. Commun. 119, 333–340 (1995).
    [CrossRef]
  25. D. Brady, K. Hsu, D. Psaltis, “Periodically refreshed multiply exposed photorefractive holograms,” Opt. Lett. 15, 817–819 (1990).
    [CrossRef] [PubMed]
  26. R. Saxena, C. Gu, P. Yeh, “Properties of photorefractive gratings with complex coupling constants,” J. Opt. Soc. Am. B 8, 1047–1052 (1991).
    [CrossRef]

1998

D. Psaltis, G. W. Burr, “Holographic data storage,” Computer 31, 52–60 (1998).
[CrossRef]

1996

1995

T. Dellwig, C. Denz, T. Rauch, T. Tschudi, “Coherent refreshment and updating for dynamic photorefractive optical memories using phase conjugation,” Opt. Commun. 119, 333–340 (1995).
[CrossRef]

P. Yeh, C. Gu, C. Cheng, K. Y. Hsu, “Hologram enhancement in photorefractive media,” Opt. Eng. 34, 2204–2212 (1995).
[CrossRef]

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Channel codes for digital holographic data storage,” J. Opt. Soc. Am. A 12, 2432–2439 (1995).
[CrossRef]

J. Lembcke, C. Denz, T. Tschudi, “General formalism for angular and phase-encoding multiplexing in holographic image storage,” Opt. Mater. 4, 428–432 (1995).
[CrossRef]

1994

1992

1991

1990

1980

J. O. White, A. Yariv, “Real-time image processing via four-wave mixing in a photorefractive medium,” Appl. Phys. Lett. 37, 5–7 (1980).
[CrossRef]

1976

Alves, C.

An, X.

D. Psaltis, G. W. Burr, X. An, M. Levene, G. Barbastathis, A. Pu, “Holographic memories,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications III, F. T. Yu, S. Yin, eds., Proc. SPIE3137, 96–100 (1997).

Barbastathis, G.

D. Psaltis, G. W. Burr, X. An, M. Levene, G. Barbastathis, A. Pu, “Holographic memories,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications III, F. T. Yu, S. Yin, eds., Proc. SPIE3137, 96–100 (1997).

Bashaw, M. C.

D. Lande, J. F. Heanue, M. C. Bashaw, L. Hesselink, “Digital wavelength-multiplexed holographic data storage system,” Opt. Lett. 21, 1780–1782 (1996).
[CrossRef] [PubMed]

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Channel codes for digital holographic data storage,” J. Opt. Soc. Am. A 12, 2432–2439 (1995).
[CrossRef]

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital information,” Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 27.

Bernal, M.-P.

Brady, D.

Burr, G. W.

D. Psaltis, G. W. Burr, “Holographic data storage,” Computer 31, 52–60 (1998).
[CrossRef]

M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, “Holographic-data-storage materials,” MRS Bull. 21, 51–60 (1996).

D. Psaltis, G. W. Burr, X. An, M. Levene, G. Barbastathis, A. Pu, “Holographic memories,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications III, F. T. Yu, S. Yin, eds., Proc. SPIE3137, 96–100 (1997).

G. W. Burr, F. H. Mok, D. Psaltis, “Storage of 10000 holograms in LiNbO3:Fe,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 9.

Campbell, S.

S. Campbell, S.-H. Lin, X. Yi, P. Yeh, “Photorefractive volume holographic memory systems: approaches, limitations, and requirements,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications, F. T. Yu, ed., Proc. SPIE2529, 134–144 (1995).
[CrossRef]

Cheng, C.

P. Yeh, C. Gu, C. Cheng, K. Y. Hsu, “Hologram enhancement in photorefractive media,” Opt. Eng. 34, 2204–2212 (1995).
[CrossRef]

Coufal, H.

M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, “Holographic-data-storage materials,” MRS Bull. 21, 51–60 (1996).

M.-P. Bernal, H. Coufal, R. K. Grygler, J. A. Hoffnagle, “A precision tester for studies of holographic optical storage materials and recording physics,” Appl. Opt. 35, 2360–2374 (1996).
[CrossRef] [PubMed]

H. Coufal, “Holographic data storage or reliability; a status report,” in 1997 Optical Digest of 1997 Optical Data Storage Topical Meeting ODS (Soc. Photo. Opt. Instrum. Eng., Bellingham, Wash.1997), pp. 46–47.

Curtis, K.

Dellwig, T.

T. Dellwig, C. Denz, T. Rauch, T. Tschudi, “Coherent refreshment and updating for dynamic photorefractive optical memories using phase conjugation,” Opt. Commun. 119, 333–340 (1995).
[CrossRef]

Denz, C.

T. Dellwig, C. Denz, T. Rauch, T. Tschudi, “Coherent refreshment and updating for dynamic photorefractive optical memories using phase conjugation,” Opt. Commun. 119, 333–340 (1995).
[CrossRef]

J. Lembcke, C. Denz, T. Tschudi, “General formalism for angular and phase-encoding multiplexing in holographic image storage,” Opt. Mater. 4, 428–432 (1995).
[CrossRef]

Grygier, R. K.

M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, “Holographic-data-storage materials,” MRS Bull. 21, 51–60 (1996).

Grygler, R. K.

Gu, C.

P. Yeh, C. Gu, C. Cheng, K. Y. Hsu, “Hologram enhancement in photorefractive media,” Opt. Eng. 34, 2204–2212 (1995).
[CrossRef]

Y. Qiao, D. Psaltis, C. Gu, J. Hong, P. Yeh, R. R. Neurgaonkar, “Phase-locked sustainment of photorefractive holograms using phase conjugation,” J. Appl. Phys. 70, 4646–4648 (1991).
[CrossRef]

R. Saxena, C. Gu, P. Yeh, “Properties of photorefractive gratings with complex coupling constants,” J. Opt. Soc. Am. B 8, 1047–1052 (1991).
[CrossRef]

Heanue, J. F.

D. Lande, J. F. Heanue, M. C. Bashaw, L. Hesselink, “Digital wavelength-multiplexed holographic data storage system,” Opt. Lett. 21, 1780–1782 (1996).
[CrossRef] [PubMed]

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Channel codes for digital holographic data storage,” J. Opt. Soc. Am. A 12, 2432–2439 (1995).
[CrossRef]

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital information,” Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 27.

Hesselink, L.

D. Lande, J. F. Heanue, M. C. Bashaw, L. Hesselink, “Digital wavelength-multiplexed holographic data storage system,” Opt. Lett. 21, 1780–1782 (1996).
[CrossRef] [PubMed]

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Channel codes for digital holographic data storage,” J. Opt. Soc. Am. A 12, 2432–2439 (1995).
[CrossRef]

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital information,” Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 27.

Hoffnagle, J. A.

Hong, J.

Y. Qiao, D. Psaltis, C. Gu, J. Hong, P. Yeh, R. R. Neurgaonkar, “Phase-locked sustainment of photorefractive holograms using phase conjugation,” J. Appl. Phys. 70, 4646–4648 (1991).
[CrossRef]

Hong, J. H.

J. H. Hong, D. Psaltis, “Dense holographic storage promises fast access,” Laser Focus World 32(4), 119–122 (1996).

Hsu, K.

Hsu, K. Y.

P. Yeh, C. Gu, C. Cheng, K. Y. Hsu, “Hologram enhancement in photorefractive media,” Opt. Eng. 34, 2204–2212 (1995).
[CrossRef]

Lande, D.

Lembcke, J.

J. Lembcke, C. Denz, T. Tschudi, “General formalism for angular and phase-encoding multiplexing in holographic image storage,” Opt. Mater. 4, 428–432 (1995).
[CrossRef]

Levene, M.

D. Psaltis, G. W. Burr, X. An, M. Levene, G. Barbastathis, A. Pu, “Holographic memories,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications III, F. T. Yu, S. Yin, eds., Proc. SPIE3137, 96–100 (1997).

Leyva, V.

Lin, S.-H.

S. Campbell, S.-H. Lin, X. Yi, P. Yeh, “Photorefractive volume holographic memory systems: approaches, limitations, and requirements,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications, F. T. Yu, ed., Proc. SPIE2529, 134–144 (1995).
[CrossRef]

Mok, F. H.

F. H. Mok, M. C. Tackitt, H. M. Stoll, “Storage of 500 high-resolution holograms in a LiNbO3,” Opt. Lett. 16, 605–607 (1991).
[CrossRef] [PubMed]

G. W. Burr, F. H. Mok, D. Psaltis, “Storage of 10000 holograms in LiNbO3:Fe,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 9.

Neurgaonkar, R. R.

Y. Qiao, D. Psaltis, C. Gu, J. Hong, P. Yeh, R. R. Neurgaonkar, “Phase-locked sustainment of photorefractive holograms using phase conjugation,” J. Appl. Phys. 70, 4646–4648 (1991).
[CrossRef]

Pauliat, G.

Psaltis, D.

D. Psaltis, G. W. Burr, “Holographic data storage,” Computer 31, 52–60 (1998).
[CrossRef]

J. H. Hong, D. Psaltis, “Dense holographic storage promises fast access,” Laser Focus World 32(4), 119–122 (1996).

K. Curtis, A. Pu, D. Psaltis, “Method for holographic storage using peristrophic multiplexing,” Opt. Lett. 19, 993–994 (1994).
[CrossRef] [PubMed]

Y. Qiao, D. Psaltis, C. Gu, J. Hong, P. Yeh, R. R. Neurgaonkar, “Phase-locked sustainment of photorefractive holograms using phase conjugation,” J. Appl. Phys. 70, 4646–4648 (1991).
[CrossRef]

D. Brady, K. Hsu, D. Psaltis, “Periodically refreshed multiply exposed photorefractive holograms,” Opt. Lett. 15, 817–819 (1990).
[CrossRef] [PubMed]

G. W. Burr, F. H. Mok, D. Psaltis, “Storage of 10000 holograms in LiNbO3:Fe,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 9.

D. Psaltis, G. W. Burr, X. An, M. Levene, G. Barbastathis, A. Pu, “Holographic memories,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications III, F. T. Yu, S. Yin, eds., Proc. SPIE3137, 96–100 (1997).

Pu, A.

K. Curtis, A. Pu, D. Psaltis, “Method for holographic storage using peristrophic multiplexing,” Opt. Lett. 19, 993–994 (1994).
[CrossRef] [PubMed]

D. Psaltis, G. W. Burr, X. An, M. Levene, G. Barbastathis, A. Pu, “Holographic memories,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications III, F. T. Yu, S. Yin, eds., Proc. SPIE3137, 96–100 (1997).

Qiao, Y.

Y. Qiao, D. Psaltis, C. Gu, J. Hong, P. Yeh, R. R. Neurgaonkar, “Phase-locked sustainment of photorefractive holograms using phase conjugation,” J. Appl. Phys. 70, 4646–4648 (1991).
[CrossRef]

Rakuljic, G. A.

Rauch, T.

T. Dellwig, C. Denz, T. Rauch, T. Tschudi, “Coherent refreshment and updating for dynamic photorefractive optical memories using phase conjugation,” Opt. Commun. 119, 333–340 (1995).
[CrossRef]

Roosen, G.

Saxena, R.

Sayano, K.

F. Zhao, K. Sayano, “Compact read-only memory with lensless phase-conjugate holograms,” Opt. Lett. 21, 1295–1297 (1996).
[CrossRef] [PubMed]

F. Zhao, K. Sayano, “Compact high-resolution holographic storage,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), paper CWF11, p. 264.

Stoll, H. M.

Tackitt, M. C.

Tschudi, T.

J. Lembcke, C. Denz, T. Tschudi, “General formalism for angular and phase-encoding multiplexing in holographic image storage,” Opt. Mater. 4, 428–432 (1995).
[CrossRef]

T. Dellwig, C. Denz, T. Rauch, T. Tschudi, “Coherent refreshment and updating for dynamic photorefractive optical memories using phase conjugation,” Opt. Commun. 119, 333–340 (1995).
[CrossRef]

White, J. O.

J. O. White, A. Yariv, “Real-time image processing via four-wave mixing in a photorefractive medium,” Appl. Phys. Lett. 37, 5–7 (1980).
[CrossRef]

Yariv, A.

Yeh, P.

P. Yeh, C. Gu, C. Cheng, K. Y. Hsu, “Hologram enhancement in photorefractive media,” Opt. Eng. 34, 2204–2212 (1995).
[CrossRef]

Y. Qiao, D. Psaltis, C. Gu, J. Hong, P. Yeh, R. R. Neurgaonkar, “Phase-locked sustainment of photorefractive holograms using phase conjugation,” J. Appl. Phys. 70, 4646–4648 (1991).
[CrossRef]

R. Saxena, C. Gu, P. Yeh, “Properties of photorefractive gratings with complex coupling constants,” J. Opt. Soc. Am. B 8, 1047–1052 (1991).
[CrossRef]

S. Campbell, S.-H. Lin, X. Yi, P. Yeh, “Photorefractive volume holographic memory systems: approaches, limitations, and requirements,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications, F. T. Yu, ed., Proc. SPIE2529, 134–144 (1995).
[CrossRef]

Yi, X.

S. Campbell, S.-H. Lin, X. Yi, P. Yeh, “Photorefractive volume holographic memory systems: approaches, limitations, and requirements,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications, F. T. Yu, ed., Proc. SPIE2529, 134–144 (1995).
[CrossRef]

Zhao, F.

F. Zhao, K. Sayano, “Compact read-only memory with lensless phase-conjugate holograms,” Opt. Lett. 21, 1295–1297 (1996).
[CrossRef] [PubMed]

F. Zhao, K. Sayano, “Compact high-resolution holographic storage,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), paper CWF11, p. 264.

Appl. Opt.

Appl. Phys. Lett.

J. O. White, A. Yariv, “Real-time image processing via four-wave mixing in a photorefractive medium,” Appl. Phys. Lett. 37, 5–7 (1980).
[CrossRef]

Computer

D. Psaltis, G. W. Burr, “Holographic data storage,” Computer 31, 52–60 (1998).
[CrossRef]

J. Appl. Phys.

Y. Qiao, D. Psaltis, C. Gu, J. Hong, P. Yeh, R. R. Neurgaonkar, “Phase-locked sustainment of photorefractive holograms using phase conjugation,” J. Appl. Phys. 70, 4646–4648 (1991).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Laser Focus World

J. H. Hong, D. Psaltis, “Dense holographic storage promises fast access,” Laser Focus World 32(4), 119–122 (1996).

MRS Bull.

M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, “Holographic-data-storage materials,” MRS Bull. 21, 51–60 (1996).

Opt. Commun.

T. Dellwig, C. Denz, T. Rauch, T. Tschudi, “Coherent refreshment and updating for dynamic photorefractive optical memories using phase conjugation,” Opt. Commun. 119, 333–340 (1995).
[CrossRef]

Opt. Eng.

P. Yeh, C. Gu, C. Cheng, K. Y. Hsu, “Hologram enhancement in photorefractive media,” Opt. Eng. 34, 2204–2212 (1995).
[CrossRef]

Opt. Lett.

Opt. Mater.

J. Lembcke, C. Denz, T. Tschudi, “General formalism for angular and phase-encoding multiplexing in holographic image storage,” Opt. Mater. 4, 428–432 (1995).
[CrossRef]

Other

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital information,” Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 27.

S. Campbell, S.-H. Lin, X. Yi, P. Yeh, “Photorefractive volume holographic memory systems: approaches, limitations, and requirements,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications, F. T. Yu, ed., Proc. SPIE2529, 134–144 (1995).
[CrossRef]

F. Zhao, K. Sayano, “Compact high-resolution holographic storage,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), paper CWF11, p. 264.

G. W. Burr, F. H. Mok, D. Psaltis, “Storage of 10000 holograms in LiNbO3:Fe,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 9.

H. Coufal, “Holographic data storage or reliability; a status report,” in 1997 Optical Digest of 1997 Optical Data Storage Topical Meeting ODS (Soc. Photo. Opt. Instrum. Eng., Bellingham, Wash.1997), pp. 46–47.

D. Psaltis, G. W. Burr, X. An, M. Levene, G. Barbastathis, A. Pu, “Holographic memories,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications III, F. T. Yu, S. Yin, eds., Proc. SPIE3137, 96–100 (1997).

R. A. Fisher, ed., Optical Phase Conjugation (Academic, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup.

Fig. 2
Fig. 2

Relative spatially dependent grating amplitude for (a) MgO:LiNbO3 and (b) Fe:LiNbO3; open and filled circles, without and with the PCM, respectively.

Fig. 3
Fig. 3

Diffraction efficiency as a function of exposure time for (a) MgO:LiNbO3 and (b) Fe:LiNbO3; open and filled circles, without and with the PCM, respectively.

Fig. 4
Fig. 4

Steady-state spatially dependent grating amplitude in the case of τ2 = 0 for (a) ϕ = π/2, (b) ϕ = 0, and (c) ϕ = π/6; curve 1, r 1 = 50%, r 2 = 100%; curve 2, r 1 = 50%, r 2 = 50%; curve 3, r 1 = 50%, r 2 = 25%; curve 4, r 1 = 0, r 2 = 0.

Fig. 5
Fig. 5

Diffraction efficiency as a function of time during the recording process in the case of τ2 = 0 for (a) ϕ = π/2, (b) ϕ = 0, and (c) ϕ = π/6; curve 1, r 1 = 50%, r 2 = 100%; curve 2, r 1 = 50%, r 2 = 50%; curve 3, r 1 = 50%, r 2 = 25%; curve 4, r 1 = 0, r 2 = 0.

Fig. 6
Fig. 6

Spatially dependent grating amplitude in the case of τ2 = 0 with an exposure time of 0.1τ1 for (a) ϕ = π/2, (b) ϕ = 0, and (c) ϕ = π/6; curve 1, r 1 = 50%, r 2 = 100%; curve 2, r 1 = 50%, r 2 = 50%; curve 3, r 1 = 50%, r 2 = 25%; curve 4, r 1 = 0, r 2 = 0.

Fig. 7
Fig. 7

Total diffraction efficiency as a function of time in the case of r 10 = 50%, r 20 = 100% for (a) ϕ = π/2, (b) ϕ = 0, and (c) ϕ = π/6; curves 1, 2, 3, 4, and 5 correspond to τ2 equal to 0, 0.1τ1, 0.5τ1, τ1, and ∞, respectively.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

A1z=-γQ2 A2-α2 A1,A2z=γ*Q*2 A1-α2 A2,A3z=γQ2 A4+α2 A3,A4z=-γ*Q*2 A3+α2 A4,
γ=iγ0 exp-iϕ=i 2πΔnλ cos θexp-iϕ;
τ1Qt+Q=A1A2*+A3A4*I0,
A1t, z=0=A10,A2t, z=0=A20,A3t, z=L=r1 A2*t, z=L,A4t, z=L=r2 A1*t, z=L,
r1=r101-exp-t/τ2,r2=r201-exp-t/τ2,
Qt=0, z=0.
A1z=-γQ122 A2-α2 A1,A2z=γ*Q12*2 A1-α2 A2,
A1z=-γQ122 A2,A2z=γ*Q12*2 A1,
Q12=A1A2*I1+I2=A1A2* expαzI1+I2expαz=A1A2*I1+I2=Q12.
A3z=γQ342 A4+α2 A3,A4z=-γ*Q34*2 A3+α2 A4,
A3z=γQ342 A4,A4z=-γ*Q34*2 A3,
Q34=A3A4*I3+I4=A3A4* exp-αzI3+I4exp-αz=A3A4*I3+I4=Q34.
Q=A1A2*+A3A4*I1+I2+I3+I4.

Metrics